47 research outputs found

    Transcription of satellite DNAs in insects

    Get PDF
    Chromatin condensation is an important regulatory mechanism of gene silencing as well as gene activation for the hundreds of functional protein genes harbored in heterochromatic regions of different insect species. Being the major heterochromatin constituents, satellite DNAs serve important roles in heterochromatin regulation in insect in general. Their expression occurs in all developmental stages, being the highest during embryogenesis. Satellite DNA transcrips range from small RNAs, corresponding in size to siRNA, and piwiRNAs, to large, a few Kb long RNAs. The long transcripts are preferentially nonpolyadenylated and remain in the nucleus. The actively regulated expression of satDNAs by cis or trans elements as well as by environmental stress, rather than constitutive transcription, speaks in favour of their involvement in differentiation, development, and environmental response

    Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets

    Get PDF
    Aims/hypothesis: Pro-atherogenic and pro-oxidant, oxidised LDL trigger adverse effects on pancreatic beta cells, possibly contributing to diabetes progression. Because oxidised LDL diminish the expression of genes regulated by the inducible cAMP early repressor (ICER), we investigated the involvement of this transcription factor and of oxidative stress in beta cell failure elicited by oxidised LDL. Methods: Isolated human and rat islets, and insulin-secreting cells were cultured with human native or oxidised LDL or with hydrogen peroxide. The expression of genes was determined by quantitative real-time PCR and western blotting. Insulin secretion was monitored by EIA kit. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. Results: Exposure of beta cell lines and islets to oxidised LDL, but not to native LDL raised the abundance of ICER. Induction of this repressor by the modified LDL compromised the expression of important beta cell genes, including insulin and anti-apoptotic islet brain 1, as well as of genes coding for key components of the secretory machinery. This led to hampering of insulin production and secretion, and of cell survival. Silencing of this transcription factor by RNA interference restored the expression of its target genes and alleviated beta cell dysfunction and death triggered by oxidised LDL. Induction of ICER was stimulated by oxidative stress, whereas antioxidant treatment with N-acetylcysteine or HDL prevented the rise of ICER elicited by oxidised LDL and restored beta cell functions. Conclusions/interpretation: Induction of ICER links oxidative stress to beta cell failure caused by oxidised LDL and can be effectively abrogated by antioxidant treatmen

    Evidence for tuning adipocytes ICER levels for obesity care.

    Get PDF
    Abnormal adipokine production, along with defective uptake and metabolism of glucose within adipocytes, contributes to insulin resistance and altered glucose homeostasis. Recent research has highlighted one of the mechanisms that accounts for impaired production of adiponectin (ADIPOQ) and adipocyte glucose uptake in obesity. In adipocytes of human obese subjects and mice fed with a high fat diet, the level of the inducible cAMP early repressor (ICER) is diminished. Reduction of ICER elevates the cAMP response element binding protein (CREB) activity, which in turn increases the repressor activating transcription factor 3. In fine, the cascade triggers reduction in the ADIPOQ and GLUT4 levels, which ultimately hampers insulin-mediated glucose uptake. The c-Jun N-terminal kinase (JNK) interacting-protein 1, also called islet brain 1 (IB1), is a target of CREB/ICER that promotes JNK-mediated insulin resistance in adipocytes. A rise in IB1 and c-Jun levels accompanies the drop of ICER in white adipose tissues of obese mice when compared with mice fed with a chow diet. Other than the expression of ADIPOQ and glucose transport, decline in ICER expression might impact insulin signaling. Impairment of ICER is a critical issue that will need major consideration in future therapeutic purposes

    Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets

    Get PDF
    AIMS/HYPOTHESIS: Pro-atherogenic and pro-oxidant, oxidised LDL trigger adverse effects on pancreatic beta cells, possibly contributing to diabetes progression. Because oxidised LDL diminish the expression of genes regulated by the inducible cAMP early repressor (ICER), we investigated the involvement of this transcription factor and of oxidative stress in beta cell failure elicited by oxidised LDL. METHODS: Isolated human and rat islets, and insulin-secreting cells were cultured with human native or oxidised LDL or with hydrogen peroxide. The expression of genes was determined by quantitative real-time PCR and western blotting. Insulin secretion was monitored by EIA kit. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Exposure of beta cell lines and islets to oxidised LDL, but not to native LDL raised the abundance of ICER. Induction of this repressor by the modified LDL compromised the expression of important beta cell genes, including insulin and anti-apoptotic islet brain 1, as well as of genes coding for key components of the secretory machinery. This led to hampering of insulin production and secretion, and of cell survival. Silencing of this transcription factor by RNA interference restored the expression of its target genes and alleviated beta cell dysfunction and death triggered by oxidised LDL. Induction of ICER was stimulated by oxidative stress, whereas antioxidant treatment with N-acetylcysteine or HDL prevented the rise of ICER elicited by oxidised LDL and restored beta cell functions. CONCLUSIONS/INTERPRETATION: Induction of ICER links oxidative stress to beta cell failure caused by oxidised LDL and can be effectively abrogated by antioxidant treatment

    Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    Get PDF
    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment

    A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages

    No full text
    Macroevolutionary trends traditionally are studied by fossil analysis, comparative morphology or evo-devo approaches. With the availability of genome sequences and associated data from an increasing diversity of taxa, it is now possible to add an additional level of analysis: genomic phylostratigraphy. As an example of this approach, we use a phylogenetic framework and embryo expression data from Drosophila to show that grouping genes by their phylogenetic origin can uncover footprints of important adaptive events in evolution

    Satellite DNA-Mediated Effects on Genome Regulation

    No full text
    In this chapter we give a comprehensive view on the role of satellite DNAs and their transcripts in heterochromatin formation and regulation as well as in modulation of gene expression
    corecore