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Abnormal adipokine production,
along with defective uptake and

metabolism of glucose within adipocytes,
contributes to insulin resistance and
altered glucose homeostasis. Recent
research has highlighted one of the
mechanisms that accounts for impaired
production of adiponectin (ADIPOQ)
and adipocyte glucose uptake in obesity.
In adipocytes of human obese subjects
and mice fed with a high fat diet,
the level of the inducible cAMP early
repressor (ICER) is diminished. Reduc-
tion of ICER elevates the cAMP response
element binding protein (CREB) activity,
which in turn increases the repressor
activating transcription factor 3. In fine,
the cascade triggers reduction in the
ADIPOQ and GLUT4 levels, which
ultimately hampers insulin-mediated glu-
cose uptake. The c-Jun N-terminal kinase
(JNK) interacting-protein 1, also called
islet brain 1 (IB1), is a target of CREB/
ICER that promotes JNK-mediated
insulin resistance in adipocytes. A rise
in IB1 and c-Jun levels accompanies the
drop of ICER in white adipose tissues of
obese mice when compared with mice fed
with a chow diet. Other than the expres-
sion of ADIPOQ and glucose transport,
decline in ICER expression might impact
insulin signaling. Impairment of ICER is
a critical issue that will need major con-
sideration in future therapeutic purposes.

Systemic insulin resistance is one of the
hallmarks of obesity that is associated
with life-threatening complications.1,2

In obesity, enlarged adipocytes have
numerous abnormalities that contribute
to overall insulin resistance such as

defective insulin-mediated glucose uptake.
The latter is caused by diminished pro-
duction and translocation of the glucose
transporter GLUT4 and impaired insulin
signaling. As a consequence, adipocytes
cannot properly store glucose and increase
the release of free fatty acids (FFAs) into
the blood.3 Continuous overload of FFAs
promotes an impairment in insulin signal-
ing and glucose uptake in muscle cells.3

Adipocytes produce several adipokines
including the insulin sensitizer adipocyte-
specific product adiponectin (ADIPOQ).4

ADIPOQ is thought to decrease circulat-
ing FFAs by increasing their oxidation
in skeletal muscle and liver.5 Increased
ADIPOQ levels reduce the triglyceride
contents, leading thereby to improvement
of insulin sensitivity.5 Numerous studies
report reduced adipose production and
plasma circulating levels of the ADIPOQ
in obese mice and human obese indivi-
duals.4 A mechanism that accounts for this
reduction of ADIPOQ and glucose uptake
has been shown.6 Adipocytes from obese
subjects have a sustained increase in
activity of the transcriptional activators
cAMP response element (CRE) binding
protein (CREB).6 The rise in CREB
activity elevates the activating transcription
factor 3 (ATF3) levels, which in turn
represses the expression of ADIPOQ and
the glucose transporter GLUT4.6

CREB activity is tightly regulated by the
level of the inducible cAMP early repressor
(ICER), a natural antagonist that contains
neither activating nor repressing domains.7

ICER acts as a passive repressor that
competes with CREB for binding to target
genes promoters. In the normal situation,
ICER activity is transiently induced by
the same stimuli that induce CREB, but
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repression occurs only when ICER reaches
certain levels.8 This interplay between
CREB and ICER constitutes part of an
adaptive mechanism to answer environ-
mental cues. While CREB rapidly induces
the expression of target genes in response
to stimuli, the repressor ICER restores
their initial expression levels and thereby
permits transient induction.7,8 Stimuli that
evoke CREB and ICER activities include
hypoglycemia, fasting, vagal and β-adre-
nergic response for example, and this
typically occurs in response to an elevation
of cAMP levels.8 Thus, as a passive
repressor, ICER activity is directly corre-
lated with its abundance.7,8 It is therefore
predictable that inadequate levels of ICER
impact to CREB activity, thereby leading
to cells dysfunction and ultimately certain
pathologies.9,10 For example, upregulation
of ICER is thought to contribute to the
development of type 2 diabetes (T2D).11-13

The disease manifests when islets β cells
from endocrine pancreas fail to release

sufficient insulin to compensate for insulin
resistance in target tissues. Loss of β-cells
function includes a decrease in insulin
secretion and amounts, which is caused by
micro-environmental diabetogenic factors
including chronic excess of FFAs, pro-
longed hyperglycemia and possibly oxi-
dized LDL.11-13 Persistent induction of
ICER couples these factors to β-cell
failure.11-13 The prevalence of T2D is
increasing dramatically as a result of the
obesity epidemic. Identification of FFAs as
diabetogenic factors, points to a crosstalk
between adipocytes and β cells in the
pathogenesis of diabetes. For this reason,
in the opposite of β cells, we postulate that
the loss of ICER elicits an increase in
CREB mediated-adipocytes dysfunction in
obesity. Quantification indeed revealed a
collapse in the levels of ICER in adipocytes
of mice obese fed with a high fat diet
(HFD) and human obese individuals.14

Both constitutive and induced levels of
ICER are affected in obesity.14 The

decrease in the production of ICER is
found in adipocytes of obese mice that
were either underfed or fasting conditions
and correlated with an augmentation in
CREB activity. In vitro experiments
realized in mouse differentiated adipocytes
showed that ICER deficiency increases
Atf3, which in turn inhibit Adipoq and
Glut4 expression and insulin mediated-
glucose uptake (Fig. 1).14

Insulin signaling fosters glucose entry in
adipocytes. In obesity insulin signaling is
defective and contributes to impaired
glucose metabolism. A mechanism that
triggers inhibition of this signaling
involves the c-Jun N-terminal kinase
(JNK) pathway.15 JNK achieves upstream
inhibition of insulin signaling by phos-
phorylating the Ser-307 residue of the
insulin receptor substrate 1 (IRS-1), thus
suppressing signal transduction of insu-
lin.16,17 In obesity, JNK activity is
increased and its inhibition can prevent
obesity-induced insulin resistance. The

Figure 1. Schematic representation for the impaired expression of Adipoq and GLUT4 ruled by the unbalance of ICER and CREB in obesity. In normal
adipocytes, there is enough production of ICER that permits the formation of homo- (ICER/ICER) and/or heterodimers (ICER/CREB) with CREB. These
interactions often occur when ICER reaches a certain level upon stimulation and aim to prevent CREB activity. Thus decreased CREB activity reduces
the expression of target genes with a cAMP response element (CRE) such as activating transcription factor 3 (ATF3). In turn ATF3 cannot repress
the expression of adiponectin and GLUT4. In obesity, the level of ICER is constitutively reduced, fostering CREB homodimers and heterodimers with other
activators. Increased CREB activity promotes the expression of ATF3, and therefore, inhibition of adiponectin and GLUT4.14
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JNK interacting protein 1, also termed
islet brain 1 (IB1) because of its high
abundance in pancreatic islets cells and
brain, is a scaffold protein that tethers
kinases of the JNK pathway.18 At present
the exact mechanism though which IB1
regulates the JNK pathway is not under-
stood. IB1 can either inhibit or activate
JNK in response to stimuli and the
function depends of the cells type. In
adipocytes, IB1 promotes activation of
JNK. Homozygous disruption of the gene
coding for IB1 in mice prevents activation
of JNK in adipose tissue.19 As the
consequence of the inhibition of JNK
activity, the knockout mice have smaller
adipose tissue, gain less weight and have
higher systemic insulin sensitivity under a
HFD compared with wild-type mice.19

Interestingly the promoter of IB1 contains
a CRE that is conserved between mam-
malians and the level of the scaffold
protein is regulated by CREB and ICER
in β-cells.20 This observation leads to the
hypothesis that the drop of ICER in
obesity accounts for JNK activity and
reduced insulin sensitivity in adipocytes
in a mechanism that involve IB1.
Phosphorylation of the transcription factor
c-Jun by JNK is accompanied by an
elevation of the c-Jun mRNA.21 The gene
coding for c-Jun contains a site that is
regulated by activated c-Jun itself in a
positive feedback loop. For this reason we
quantified the expression of c-Jun by
quantitative real-time PCR in parallel to
ICER and IB1 to mirror JNK activity in
adipose tissues of obese mice fed with
HFD. We found that the diminution of
ICER correlated with an augmentation of
c-Jun mRNA and IB1 protein levels in
adipose tissues (Fig. 2A and B), support-
ing the idea that induction of IB1 might
trigger JNK activity and insulin resistance
in obesity. Adipose tissue expansion,
which could be the consequence of both
adipocytes hyperplasia and hypertrophy,
accompanies adipocytes dysfunction. Some
genes involved in cell proliferation and
apoptosis are also targets of CREB/
ICER.22,23 It is therefore possible that the
rise in CREB activity promotes expansion of
adipose cell mass in humans even though
such role has been ruled out in mice.6

Constitutive reduction in the levels of
ICER in obesity elicits a sustained rise in

CREB activity, which in turn stimulates
the expression of genes that contain a
CRE. However not only the CREB
transcriptional factors but also activators
of the CRE modulators (CREM) regulate
the expression of these CRE containing
genes in response to stimuli.7,8 In addition,
like CREB, CREM acts by either forming
homo- or heterodimers with basic leucine
zipper transcription factors and can be

antagonized by ICER.7,8 Approximately
4,000 genes could be potentially regulated
by CREB, CREM and ATF in mam-
mals.24 In obesity, with the exception of
ADIPOQ, expression of many adipokines
is overproduced in adipocytes.2,25,26 The
production of these adipose products
could be affected by the reduced abund-
ance of ICER in mechanisms that evolve
CREB and CREM activators. If so,

Figure 2. Examination of IB1, Icer and c-Jun levels in epididymal white adipose tissues (WAT) of
obese mice. (A) Measurement of IB1 protein contents by western blotting experiments. Total
proteins were prepared from WAT of C57Bl6-Rj male mice that either fed for 16 weeks with a high
fat diet (obese, H) or chow diet (control, C). All procedures on mice were performed according to
the Swiss legislation for animal experimentation. Total proteins (50 mg) were loaded into a SDS-
polyacrylamide gel as described.11,14 The figure shows the results of a representative experiment
out of four. The corresponding quantitation is depicted below the blot. The values correspond to
the ratio in band intensities of IB1 over b tubulin. Data are the mean ± SEM of four independent
experiments. **p , 0.01. (B) Quantification of Icer and c-Jun mRNA levels. Total RNAs were
prepared from WAT of obese mice (filled bars) and lean control mice (white bars) and were
then subjected to quantitative real-time PCR. The primers sequence for Icer and c-Jun and
conditions for PCR are those published elsewhere.11,21 The levels of the two mRNAs were
normalized against the housekeeping acidic ribosomal phosphoprotein P0 gene (Rplp0) gene
and those of the lean mice (control) cells were set to 100%. Data are the mean ± SEM of five
independent experiments. **p , 0.01, ***p , 0.001.
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restoration in the adipose levels of ICER
should be a major consideration for future
therapeutic strategies to combat insulin
resistance and its metabolic complications
such as type 2 diabetes.
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