10,375 research outputs found

    Strings in Horizons, Dissipation and a Possible Interpretation of the Hagedorn Temperature

    Full text link
    We consider the entanglement of closed bosonic strings intersecting the event horizon of a Rindler spacetime and, by using some simplified (rather semiclassical) arguments and some elements of the string field theory, we show the existence of a critical temperature beyond which closed strings \emph{cannot be in thermal equilibrium}. The order of magnitude of this critical value coincides with the Hagedorn temperature, which suggests an interpretation consistent with the fact of having a partition function which is bad defined for temperatures higher than it. Possible implications of the present approach on the microscopical structure of stretched horizons are also pointed out.Comment: A detailed description of string boundary states in a Rindler horizon was added, and their relation with the stretched horizon microscopic structure was emphasized. References added. To appear in Eur. Phys. J.

    IR ion spectroscopy in a combined approach with MS/MS and IM-MS to discriminate epimeric anthocyanin glycosides (cyanidin 3-O-glucoside and -galactoside)

    Get PDF
    Anthocyanins are widespread in plants and flowers, being responsible for their different colouring. Two representative members of this family have been selected, cyanidin 3-O-β-glucopyranoside and 3-O-β-galactopyranoside, and probed by mass spectrometry based methods, testing their performance in discriminating between the two epimers. The native anthocyanins, delivered into the gas phase by electrospray ionization, display a comparable drift time in ion mobility mass spectrometry (IM-MS) and a common fragment, corresponding to loss of the sugar moiety, in their collision induced dissociation (CID) pattern. However, the IR multiple photon dissociation (IRMPD) spectra in the fingerprint range show a feature particularly evident in the case of the glucoside. This signature is used to identify the presence of cyanidin 3-O-β-glucopyranoside in a natural extract of pomegranate. In an effort to increase any differentiation between the two epimers, aluminum complexes were prepared and sampled for elemental composition by FT-ICR-MS. CID experiments now display an extensive fragmentation pattern, showing few product ions peculiar to each species. More noteworthy is the IRMPD behavior in the OH stretching range showing significant differences in the spectra of the two epimers. DFT calculations allow to interpret the observed distinct bands due to a varied network of hydrogen bonding and relative conformer stability

    Alpha Channel Fragile Watermarking for Color Image Integrity Protection

    Get PDF
    This paper presents a fragile watermarking algorithm`m for the protection of the integrity of color images with alpha channel. The system is able to identify modified areas with very high probability, even with small color or transparency changes. The main characteristic of the algorithm is the embedding of the watermark by modifying the alpha channel, leaving the color channels untouched and introducing a very small error with respect to the host image. As a consequence, the resulting watermarked images have a very high peak signal-to-noise ratio. The security of the algorithm is based on a secret key defining the embedding space in which the watermark is inserted by means of the Karhunen–Loève transform (KLT) and a genetic algorithm (GA). Its high sensitivity to modifications is shown, proving the security of the whole system

    Mirror symmetry breaking as a problem in dynamical critical phenomena

    Full text link
    The critical properties of the Frank model of spontaneous chiral synthesis are discussed by applying results from the field theoretic renormalization group (RG). The long time and long wavelength features of this microscopic reaction scheme belong to the same universality class as multi-colored directed percolation processes. Thus, the following RG fixed points (FP) govern the critical dynamics of the Frank model for d<4: one unstable FP that corresponds to complete decoupling between the two enantiomers, a saddle-point that corresponds to symmetric interspecies coupling, and two stable FPs that individually correspond to unidirectional couplings between the two chiral molecules. These latter two FPs are associated with the breakdown of mirror or chiral symmetry. In this simplified model of molecular synthesis, homochirality is a natural consequence of the intrinsic reaction noise in the critical regime, which corresponds to extremely dilute chemical systems.Comment: 9 pages, 3 figure

    Delving in the loss landscape to embed robust watermarks into neural networks

    Get PDF
    International audienc
    corecore