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S U M M A R Y  
The shear stress at the leading edge, calculated on basis of the Navier-Stokes equations and the no-slip boundary 
condition, approaches infinity. However, taking into account the mean free path of the molecules, which implies 
admitting a certain slip, the shear stress becomes inversely proportional to the square root of the Knudsen number 
~c if ~c-~0. x is defined as the ratio between the mean free path and the viscous length. The new boundary condition 
modifies the shear stress only within the Knudsen region of which the size is of the order of 3 to 4 times the mean free 
path. 

1. Introduction 

Incompressible viscous flow along a semi-infinite flat plate has been calculated accurately on 
basis of the Navier-Stokes equations assuming the no-slip boundary condition at the plate, 
see refs. [1, 2]. It follows that the shear stress at the leading edge becomes infinite like 0.755 
(x/L) -~, where x denotes the distance from the leading edge, L a reference length taken equal 
to the viscous length v/U, v the kinematic coefficient of viscosity and U the flow velocity. The 
constant 0.755 differs from that which would follow from the Blasius profile, viz. 0.664, as a 
result of the importance of a term v- ~ (02 u/~x 2) (u = local velocity in x-direction) which is 
retained in the Navier Stokes equations but neglected in boundary layer theory. 

The infinite shear stress can be no physical reality. It is due to two simplifying assumptions. 
The first is the assumption of the infinitely thin plate. In reality the plate will always have a 
certain thickness, which leads to the existence of a stagnation point implying that the shear 
stress starts from zero. In the case of a parabolic cylinder the shear stress along the wall has 
been calculated [3]. 

The second simplifying assumption is that the mean free path )I of the air molecules was taken 
as zero. However, if one approaches the sharp leading edge of an infinitely thin plate, the 
distance to the leading edge finally becomes smaller than the mean free path. It is then no longer 
allowed to assume the latter equal to zero. We have to introduce a Knudsen number given by 
~:=- ~/L. 

For large values of ~c the intermolecular collisions can be neglected and the flow is called 
free molecule flow. For moderate values of ~ the flow is called transition flow, which is deter- 
mined by kinetic theory and the Maxwell-Boltzmann equation. Finally, flows with small 
values of ~c are called slip flows and these are reasonably well described by the Navier-Stokes 
equations together with a condition for the slip velocity at the body. This condition is taken 
as (see [4]) 

u =  y~ ~u ay 0.1) 

where y is the coordinate perpendicular to the body. 
The present paper is concerned with calculating the viscous flow along a flat plate, using the 

Navier-Stokes equations, and replacing the no-slip condition u = 0 by condition (1.1). It will 
be found that application of (1.1) only modifies the solution described in [1] within a region 
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of size ~cL. This Will be called the Knudsen region, in contrast to the Navier-Stokes region 
which is of size k 

For Knudsen numbers larger than zero, the shear stress remains finite, reaching at the leading 
edge a value which is proportional to ~c -~. 

2. The fundamental equations 

The Navier-Stokes equation in terms of the stream function ~ is 

aO 8(AO) 00 8(AO)_ vAAO (2.1) 
Oy 8x Ox Oy 

where x, y are Cartesian coordinates, 
02 02 

a = ~x2 + - 8y 2 

the Laplacian and v the kinematic viscosity. For the semi-infinite flat plate the boundary 
conditions allowing slip flow are 

02~./ 
x < 0 ,  y = 0 : q / = 0  - 0  

' Oy2 

x > 0 ,  y = 0 :  ~ = 0 ,  04, i ~ 
07 = 7 

(2.2) 

where ~. denotes the mean free path. 
Introducing dimensionless parabolic coordinates ~ , ,  and a dimensionless streamfunction 
by 

x = L ( ~ 2 - , 2 ) ,  y = 2 L ~ . ,  0 = v ~  (2.3 

where L =  v/U denotes the viscous length, eq. (2.1) transforms into 

O~P OF 87: 8F 
-8, 0~ 04 0, - A F ,  

(2.4] 
4( 2+.2)r = 

where A=632/0~2-t-~2/0.2 and F=ve)/U 2 with the vorticity co given by Ou/Oy-Ov/Ox. The 
boundary conditions become 

ahead of the plate ~ = 0 :  k u = 0 ,  F = 0 ,  ] (2.5) 

at the plate , = 0" ~ = 0 ,  ~ -- ~ 0q 2 

where tr = 2/L, the Knudsen number. 
Since for ~ = 0 F becomes infinite at the leading edge we replace the variable F by 

K = (~2 ~_ ,2) F .  (2.6) 

Then the equations become 

A K _ O ~ c 3 K  87*0K 2K ( 0~g 8 ~ )  4 ( 8K 

A7 j = 4K 

+ , ~ - - K  

(2.7) 

with boundary conditions 
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4 = 0 "  7 / = 0 ,  K = 0 ,  / (2.8) 
91/J /s 92 I// 

J 7 = 0' 7 j = 0,  97 24 9 7 2  " 

For large values of ~ the solution should approach the Blasius solution. This means that for 
4-* o% the asymptotic expansion for 7 j begins with 4f(27) and that for K with ~f"(27). The 
flmction f satisfies the differential equation 

2f'" + i f "  = 0 (2.9) 

with boundary conditions f(0) = f '  (0) = 0, f '  (oo) = 1. 
Since for {--+ oo K becomes proportional to {, it follows from (2.8) that 9 ~u/97 and hence also 

7 j will contain a term without { in its asymptotic expansion. This term will be proportional to 
~c. Hence we write 

~---,oo : ~P~{f(27)+~cg(27), K~{f"(27)+~cg"(27) (2.10) 

by which the 2nd equation (2.7) is satisfied. 
Substitution into the first equation (2.7) yields, when the terms proportional to 4 are put 

equal to zero, the Blasius equation (2.9). Putting also the terms without 4 equal to zero, we 
obtain the equation 

29'' + fg"' + 2f '  9" + f"g '  = 0. (2.11) 

It is well-known that for 7--* oo f "  (27) (and hence also the vorticity) decreases exponentially to 
zero. It then follows from eq. (2,11) that also 9"(27) decreases exponentially for 7-* oo. This 
would allow the behaviour 9(7)~aT+b. In outer coordinates (polar coordinates in the 
4, q-plane) this becomes ar sin 0 + b. Although this is a harmonic function, it can never satisfy 
the boundary condition 7 '=  0 for 4= 0 valid for any r. Hence, also 9'(oo)--+0, exponentially. 

The differential equation (2.11) can be integrated, yielding 

29'" + f9" + f '9 '  = O, 

where the integration constant is zero since all terms vanish for 7--* oo. A second integration 
leads to 

29" +fg'  = 0, (2.12) 

where the integration constant vanishes for the same reason. 
The boundary conditions (2,8) for 7 = 0 produce after substitution of (2.10) the following 

boundary conditions for eq. (2,12) 

9(0) = 0,  9'(0) = f " (0 ) .  

This means that the solution of (2.12) will be 

9(27) = / ' (27 )  

and that we may replace (2.10) by the following condition 

--+ oo : 7* ~ 4f(27) + Kf' (27), K ~ 4f" (27) + Kf'" (27). (2.13) 

For 7--+ o% that is outside the boundary layer, we have potential flow, satisfying A 7 j = 0. The 
solution for r ~  o% matching the boundary layer solution and satisfying the boundary con- 
ditions, is 

r---,oo : ~P ,,~r2 sin 2 0 -  flr cos O+ tc (1 _ 2 0 )  (2.14) 

where fl is defined through 

f(27) ~ 27-- fl for 7-* oo. 
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3. The  so lut ion  near the leading edge  

This solution is put in the form 

~(r,  0) = rPO(0), p > 0  (3.1) 

where r, 0 are again polar coordinates in the 4, q-plane. Then it follows from the second eq. (2.4) 
that F = O (r p- 4). The terms in the left-hand side of the first eq. (2.4) become O (r :p- 6) while the 
right-hand side becomes O (r p- 6). This implies that for the smallest value ofp  which is possible 
in (3.1), we must have AF=O. The equation for ~ then becomes 

A 4(~2+t/2 ) A 7-' = 0 (3.2) 

which means that in x- and y-coordinates 7 j should be a bi-harmonic function. This corresponds 
to Stokes flow. 

Substitution of (3.1) into eq. (3.2) leads to 

0""+ {p2 _1_ ( p _  4)2} O" -I- p2 (p_  4)20 = 0 (3.3) 

where a prime denotes differentiation with respect to 0. 
At the plate we have 0/0t/= r-10/00, ~ = r, whence the slip condition becomes 

0 2 ~ 2r 2 07 t 
- (3.4) 

002 /s 00  ' 

Since 7 ~ is O(rP), 02 ~/c~O 2 should become zero for the smallest value of p. The boundary 
conditions pertaining to eq. (3.3) then are 

0 = 0 :  o = 0 ,  (3.5) / 
0 = ~ / 2 :  O = 0 ,  O ' = 0 . )  

By writing the general solution of O in the form 

O = A cos pO+B sin pO+C c o s ( p - 4 ) O + D  sin ( p - 4 ) 0  (3.6) 

it is found that the homogeneous problem (3.3), (3.5) has only for even values of p a solution 
which is different from zero. However, for p = 2  and p=4 ,  (3.6) does not give the general 
solution. For p = 2 the general solution is 

O = A cos 20 + B sin 20 + CO cos 20 + DO sin 20 

and it follows that the solution which satisfies the boundary condition is 

7 j = B r : s i n 2 0 = 2 B ~ t / ,  F = 0 .  (3.7) 

This is identical to the homogeneous flow ~ = BUy near the leading edge (first approximation). 
The slip velocity at the leading edge is BU. 

The next value of p which has to be investigated is p = 4. Since for the first approximation 
F =  0, the left-hand side ofeq. (2.4) vanishes in this approximation which implies that (3.2) and 
(3.3) are also valid for p = 4. However, in the right-hand side of (3.4) the first approximation has 
to be substituted which means that the boundary conditions for eq. (3.3) now become 

0 = 0: O = 0 ,  O" = 4Bite, (3.8) 

0=re /2 :  O = 0 ,  O " = 0 .  

The general solution of eq. (3.3) for p = 4 is 

O = A 1 cos 40+B~ sin 4 0 + C ~ 0 + D  1 . (3.9) 

Substitution into the boundary conditions leads to an inconsistent system. This means that for 
p = 4  the solution can not be described by (3.1) but is of the form 

r 4 O 1 (0)+ r 4 log r 02 (0). (3.10) 
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Substituting into eq. (3.2) and remarking that this equation should be satisfied for any r, we 
obtain the following two differential equations 

O~"+ 160~ + 80~ = 0,  (3.11) 

Oi"+  160~ = 0.  (3.12) 

The boundary conditions corresponding to eq. (3.12) are those given by (3.5). Putting the solu- 
tion of 02 in the form of (3.9), but with subscripts 2, this solution becomes 

02 = B2 sin 40. 

Hence, eq. (3.11) changes into the inhomogeneous equation 

O~"+ 160'~ = 128B 2 sin 40 (3.13) 

while the boundary conditions are given by (3.8). 
A complimentary integral of this equation turns out to be B 20 cos 40. The complete solution 

of (3.13) will then be 

O t = A 1 c o s 4 0 + B  1 sin 4 0 + C 1 0 + D  1+B20  cos 40.  (3.14) 

boundary conditions (3.8) will not be inconsistent, it proves to be necessary that 

B 2 = B/2~tK. 

Furthermore 

A I = - B / 4 ~ c  , D 1 = B/4tr , C t = - B/2rc~c 

while B 1 remains indeterminate. Hence 

0 1 =  B ( 2  - O) ( 1 - c o s  40)/2~z~c + Bl  sin 40 , 

O e = (B sin 40)/2rcK. (3.15) 

Substituting into (3.10) and returning to 4, t/-coordinates, we obtain as expansion of 7/near 
the leading edge 

4B ~2/,12 1 r B ku= 2Bet/ + - -  tan-  - + 4BI~tI(~2--t] 2) + - -  ~ t l ( ~ 2 - - t / 2 )  l o g ( ~ 2 + q 2 ) .  (3.16) 
zt~c t/ ~z~c 

The corresponding value of F is 

2B r (3.17) F = - -  tan-  1 _ _  

7zK t/ 

It follows that for x > 0 the shear stress (proportional to F) remains indeed finite at the leading 
edge. However, the origin still is a singular point for F, since the value which F assumes at the 
origin depends upon the direction along which the origin is approached. Along the plate 
(t/= 0) F approaches the value Bloc at the leading edge. This does not mean that F is inversely 
proportional to K since B may depend on x (B is independent of ~ and t/). In fact, we will show 
in the next section that B is proportional to ~:-~ if ~: is sufficiently small. This confirms that for 
~c=0 the slip velocity BU vanishes. 

4. The solution in the Knudsen region for small K 

The Knudsen region is the region where the slip condition (1.1) differs from the no-slip condi- 
tion u = 0. This is a small region inside of the Navier-Stokes region disappearing for ~:~0. 

We will now consider a matched asymptotic expansion of the solution for small K taking 
the Knudsen region as inner region and the Navier-Stokes region as outer region. For this 
purpose we use the equations (2.4) with boundary conditions (2.5). As outer variables we retain 
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4, t/, F and 7 j while the inner variables 2, #, 7 and 4  ̀are defined by* 

=2K p, t / = # t d ,  F=7~c r, 7 ~=4`~c S (4.1) 

where the exponents p, q, r and s have to be determined in such a way that ~c disappears from 
(2.4) and (2.5). 

In fact, K is only present in the slip condition, which becomes in inner variables 

04`_  1 024` if p + q = l .  (4.2) 
0# 22 0# 2 

The second equation (2.4) transforms into 
0 2 02 

4 ( 2 2 + # 2 ) 7  = d~t with A = ~ 5  + --0#2 

if p = q and 2p+r  = s - 2 p .  (4.3) 

A third relation between the exponents follows from the matching condition. This expresses 
that the outer solution for (32 + q2)r should correspond to the inner solution for (22 + # 2 ) ~  
oo. The outer solution is (see [1] and [5] ) 7 ~ = A(t/2 with A = 0.755 and hence the inner solution 
becomes 

4`=A2# 2 for (22+#2)�89 if s = p + Z q .  (4.4) 

From the relations (4.2), (4.3) and (4.4) follows that 

p = � 8 9  q = � 8 9  r = � 8 9  s = 1 � 8 9  (4.5) 

Finally transforming the first equation (2.4) to inner variables we obtain 

o4, 07 04` 07 - to- 1~A7. 
0# 02 02 0# 

For small ~c this relation reduces in first approximation to 

A 7 = 0 (4.6) 

expressing that we again have Stokes flow. 
Two conclusions can be drawn from the above 
(i) The size of the Knudsen region is in 3, q-coordinates equal to ~:+ and in the physical 

x, y-coordinates, eq. (2.3), equal to ~L. 
(ii) Since F becomes of order ~c -~, it follows from eq. (3.17) that B is of order ~:~. 
Recapitulating, the inner problem is 

4(22+#2)7 = A~ 

0 =  A 7 

2 =  0: r = 0, 7 = 0,  (4.7) 

0r 1 02r 
# = 0 :  ~ = 0 ,  - 

0# 22 0# 2 ,  

A2 
' 0- A2# 2, 7 2(22+#2). 

Substituting r -- A2# 2 into the slip condition yields that the left-hand side becomes 0 and the 
right-hand side A. We remark that A2# 2 is only the first term in an asymptotic series for 
(42-/- #2)k--+oo and that a further term will produce 0r  

From eq. (4.7) it follows that r is a biharmonic function in x, y-coordinates. Since r = 0 for 

* It will be clear that this 2 and ~ have nothing to do with the mean free path and the physical stream function. 
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y-- 0, we may put ~, (x, y) = y4) (x, y) where 4) is a harmonic function. In parabolic coordinates 
we write 

(2, #) = 2#4) (2, #) (4.8) 

where 4) is harmonic in 2, #-coordinates. The boundary value problem then simplifies to 

A4) = 0 

2 = 0 :  - 0 ,  
O2 

04) 
# =  O: 24) - 

r = (,~2+#2)~-,oo: 4) ~ A # .  

We first investigate 4) for large values of r. Putting 

4) = rp o (0) 

the problem for O is 

O"+p 20 = 0 

0 = 0 :  O = 0 ,  

0 =  7r/2: O ' = 0 .  

This leads to O = A sin 0 corresponding to 4)= A#. 
The next term in the asymptotic solution is 

1 log  r 
- 0 1  (0) Jr- 0 2 (0) .  
r y 

The solution for O 2 is O 2 = A  2 sin 0. The equation for O 1 then becomes 

O ~ + O  1 = 2 A  2 sin 0 

with boundary conditions 

0 = 0 :  O r = A ,  

0 =  ~/2: o ' 1 = 0 .  

There can only be a solution if A 2 = 2Alto and then the solution is 

2(2 ) O a = A  1s in0  + - A  - 0 cos0 with A 1arbitrary.  
7~ 

Hence, the asymptotic expansion of the solution of (4.9) for large r is given by 
1 27(A 7c ) 2 logr  

4 ) = A r s i n 0 + - A  1 s i n 0 + -  - 0 c o s 0 + - A  s in0 .  
r Tc 2 ~ r 

We will now introduce a new function 

41 = 4 - A # ,  

for which the boundary value problem reads as follows 

a4 )  1 = 0 

2 = 0 '  04)1 _ 0,  
02 

~4)1 # = 0 .  , ~ 4 ) 1 = ~ - + A ,  

r ~ m :  4)1= O ( r - l l o g  r) and O(r-a), see(4.10). 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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By aid of the Green's function of the second kind for a quadrant the solution can be expressed 
in terms of the normal derivative along the contour. The only contribution comes from the 
2-axis. Hence 

where 

O(2)( 2, #; At, #0 = 2~ Re l o g ( w 2 - w 2 ) ( w 2 - w  .2) 

with w=2+i# ,  wx=21+i#i  and w * = 2 1 - i l ~  1. 
The value of qS1 at the A-axis then becomes equal to 

q~l (2, O) = 1 f~o log ]22-221 8~bl (2~)d21 
7~ 0 ~ - ~  " 

Using the boundary condition for ~= 0 from (4.12) we obtain an integral equation for 8~a/@, 
viz .  

8q~1 2 1 ~ 8~1 
8# (2)---zc j0 1~ ~-~ (21)d21-A " 

Introducing a new function fl  (2) by 

8# ( 2 ) = - A 2 / 1 ( 2  ) (4.13) 

and then replacing 22 by ~ and fa (2) by f(~), the integral equation becomes finally 

f (x)= (2~) -1 f~ logl~-~,l f(~0dX~ + ~-~. (4.14) 

The behaviour of l(x) for .~--+0 and for if--+ oo can be derived from this equation. 
Since f(2) is such that the integral in (4.14) will converge for any value of if, it follows that 

the first term in the asymptotic expansion of f(ff) for ff~0 will be ff-~. In order to find further 
terms we split the integral in [0, a] and [a, oo), where a is a small value. The last integral will be 
a regular function of ft. 

The main contribution to the first integral will come from substitution of ~-~ for f(21). 
Replacing if, by 22 and ff by 2 2 this contribution becomes 

('/" log 12 2 --22[ d21 . 
7~J  o 

This integral can be calculated exactly and appears to be a regular function of 2 2 = X. Hence, 
the integral in {4.14) gives rise to terms 

Cl ~- C2 X-}- C3 X2"q - . . . .  

in the expansion of f(ff) for 2--+0. The quantities cl, c2, ... are unknown constants. 
Further terms in f (2)  will be found by repeating the process described above but now sub- 

stituting f(ffa)= c~. Then we have to consider the integral 

C I i a 2 ~ j  ~ log lx-x l l  dxa, 

which is equal to 

c~ 
2~ ~ log 2 + regular function of ~.  

By continuing this process we finally obtain 
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Cl Cl 22 (log 2) 2 -'~ f ( x )  = 2 - ~ + c t  + ~ 2 log 2 + c 2 2  + 16~z 2 

1 (c 1 ) X2 log 2q-C322q- for 2 ~ 0 .  (4.15) + ~  ~ -  U~ e~ ... 

The first two terms also follow from the expansion (3.16) using (4.1), (4.5), (4.8), (4.11) and 
(4.13). It then appears that 

C 1 = - -  2B/AIr ~ . (4.16) 

The behaviour of f(2) for 2--+oo follows from (4.10), (4.11) and (4.13) as 
.1.(2)=2_} { 1 log2  Ca 3 (log 2) 2 1 ( 2 )  1og2 C 2 I 

2 + 2 27c 2 22 + 7c 3C1 + ~ + ~ + ... for 2 ~ o o  

(4.17) 

where C1, C 2 . . . .  are arbitrary constants. Only the first two terms follow from (4.10); for the 
further terms (4.10) should be extended. 

5. The numerical solution for arbitrary K 

It is well-known that the vorticity decreases exponentially for large q. This means in the present 
case that for q > 5, K vanishes and only 7 j has to be determined. Therefore, the problem is to 
determine in the strip 4 > 0, 0 < q < 5 a solution ofeqs. (2.7) with boundary conditions (2.8) and 
(2.13) and to determine for 4 > 0, q > 5 a solution ofA 7J= 0 with boundary condition (2.14) and 
the first condition (2.8). Along the line 4 = 5 the two solutions should match continuously with 
a continuous derivative. 

There are two complications for the numerical solution, the first being that the regions are 
infinite and the second that the functions K and 7 ~ become infinite. 

In the strip ~ > 0, 0 < q < 5 the last difficulty is circumvented by introducing as new variables 

W1 = ~ - 4 f ( 2 q ) ,  K 1 = K - ~ 3 ( 1 + 4 2 )  l f ' (Zq) .  (5.1) 

The term which is subtracted from K in order to obtain K 1 behaves like ~f" (2q) for 4 ~  0o. 
At ~ = 0 we do not subtract 4f" (20) since along the plate K behaves like 42, see (2.6) and (3.17), 
and in that case we would subtract a term which is large compared with the original term. 

The infinite strip is transformed to a square 0<  s<  1, 0<  t <  1 where s and t are defined by 

log(1 + 4/2) / 
a = 1 4/2 ' 

t 
O" = ~S ~- (1 --00S 3 , [ (5.2) 

/ q = f i t + ( 5 - - f i ) t  3 . 

The transformation from ~ to a contains a log-term in order to keep the derivatives of 7Jl 
and K1 at a =  1 finite. Otherwise they would become infinite since the behaviour of T1 and 
K~ a t 4 = o o i s  

r ~1 = 1of' (20)+0(r -1 log 4, 4 -1 ) i} 
K ,  ~:/"'(2q)+O(~ -1 log 4, ~-1) . (5.3) 

The boundary value problem has been solved by aid of a finite difference method using a net 
which has been obtained by taking constant mesh sizes in s- and t-directions. An optimal 
distribution of points in the 4, q-plane can be obtained by suitable choice of the parameters 
a and ft. In order to have a number of points within the Knudsen region which has size tc ~ in 
the ~, N-coordinates, we took a = p~c ~ where p = �89 for K = 1 and p decreasing with ~. For ~: = 0, 

was taken equal to 1 since the Knudsen region then does not exist and we do not need any 
points there, fl was taken equal to 5tc ~- except for K = 0 and ~: = 1 where fi was put equal to 3. 
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After transformation to the new variables the differential equations become so complicated 
that we abstain from mentioning them here. 

In the quarter-infinite plane ~ > 0, t />  5 we use polar coordinates with origin ~ = 0, ~/= 5 
and then transform the radial coordinate r to s in the same way as in eq. (5.2) ~ has been trans- 
formed to s. The behaviour of ~P1 along the line s = 1 is, according to (2.14), as 

r---+oo : I/11 = N ( 1 - - Z 0 / x ) .  (5 .4)  

From the slip condition at the plate we have to derive a boundary condition for K 1 at t/= 0. 
Substituting (5.1) into the second equation (2.7) we obtain 

A 7Jl = 4K 1-4~  (1 + ~a)- if, ,  (2t/). 

Transforming to the t-coordinate and using 7Jl = 0 for t/= 0, this equation becomes 

82 ~1 t" 0~1 44 f, ,  
t'2 &2 + 8t - 4K1 1 +42 (217) (5.5) 

where t ' =  dt/&l (but f '  still denotes the derivative o f f  to the argument 2r/). For t = 0 we have, 
using the slip condition (Z8), (2.7) and (5.1) 

0T1 - 2~c{-~ ~ + 0 t  ~ 2  f " (O)} / t ' .  (5.6) 

After substitution of (5.6) into (5.5) the derivative 02 ~,/Ot 2 can be calculated. By aid of 
Taylor series expansions it can easily be derived that 

0~[-/1 0 2 ~t 1 
87J~ (0., h ) -  7J, (0., 2h) = 6h ~ -  + 2h 2 ~ + O(h 4) (5.7) 

where the derivatives at the right-hand side are to be taken at (0., 0). After having substituted 
the values obtained for O~Pa/~t and 0: 7~l/Ot: into (5.7), a relation for K 1 follows, containing 
an error O (h a) 

K1 = {8 ~t 1 (0., h ) -  ~1 (0., 2h)} t '2 - -  2to (6ht'- 2 h  2 t"/t')~ (1 + ~2)- if, ,  (0) (5.8) 
8h 2 + 2K~- 1 (6ht'- 2h z t"/t') 

A second complication is the connection of the solutions along the line t/= 5. The differential' 
equation for ~ in points of the line t/= 5 is 

(~2 ~IJ1 Or, OIP1 02 T t do. 
0-'2 00" ~ -4- W + 0q 2 -- 0 where 0.' = --.d{ (5.9) 

The quantity 82 7Jl/&/z is found as a finite difference using the points indicated in Figure i 
as 0, 1 and 2. But the point 2 itself is obtained by interpolation from the points a, b and c. 
This interpolation is performed in the 0.-coordinate. 

The system of finite difference equations has been solved by aid of line iteration. This means 
that at a line 0.=constant, the quantities 7Jl and K1 are unknowns (7Jl both in the Navier 

rL 

/ 
/ 

o ' - h  cr cr+h 

Figure I. The  grid structure near  the line q =  5. 

:, ~(o-) 
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Stokes region and in the potential region) and are solved all at the same time. The iteration 
sequence proceeds from a = 0 to a = 1 and then is repeated until sufficient convergence has been 
obtained. Values for o--h  and a + h are taken from previous iteration steps. 

The finest gridsize which has been applied consisted of 40 equidistant points in s- and t- 
direction and 20 equidistant points in 0-direction. Hence, the total grid was 40 x 60 points. 
Calculations have also been made with double meshsize and Richardson extrapolation, as- 
suming the error to be O (h2), has been applied. 

6. The numerical solution of the integral equation for small x 

The integral equation is given by eq. (4.14). The complete interval [-0, ~ )  is divided into 2 parts, 
[0, E] and [E, ~) .  The parameter E can be taken equal to 1, but it turns out to be more ad- 
vantageous to take E =  3. In view of eq. (4.15) we take as new unknown function in [0, E] 

9(x) : f ( ~ ) - X  } �9 (6.1) 

The integral equation then is replaced by 

= log l~ -2 ' l  {9(x')+U-~}dX ' + ~ l o g l ~ - ~ ' l f ( ~ ' ) d ~ ' ,  
g(`2) o 

O< 2< E.  
(6.2) 

f(X) = ~ 0 log lX-EI  {g(~ ' )+2 ' ,~}d~ ' + 2~ l~  

~ > E .  

The interval [0, E] is subdivided into n equal parts of length h; ffj =jh, nh = E. In the first 
subinterval [0, hi the function g (if) is approximated by 

c l  
g(~) = c 1 + ~ X log X+c2X, (6.3) 

which is in accordance with (4.15). In the evaluation of 

.( "o log l2 -  UI g (,Y') d~ ' 

the first and last terms of the right hand side of(6.3) give rise to integrals which can be calculated 
analytically. The middle term leads to 

lj = logl~--2'l  ~' log `2'd2' = 
�9 0 

= h2.[lo z l O g ( h -  "c) log'cd'c+�89 log:~ log h 

- �89  log h log(~-h)- �89 h,  where ~ = U/h.  

The first term of this result has been evaluated by Gauss integration using the formulae of 
Anderson [6] which have been derived for integrands containing a logarithmic factor. For 

= 0 and ~ = h exact calculation is possible. 
In the interval h<_ ~ <_ E 9('2) has been approximated by a piecewise linear function (linear 

spline), that is by 

g(.~) = ~- gjSj(2), (6.4) 
j = l  

where 

Sj(`2) = ( ~ - 2 j _ l ) / h  if `2j_~<2<2j,  ] 
S~ (~) = - (ff - ~j +~)/h if ~j < ~ < ~ +~, j (6.5) 

Sj(ff) = 0 for all other ~.  
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This holds for all j except j = 1 and j = n. Fo r  j = 1 we have 
S I ( X  ) = - ( x - 2 2 ) / h  if 2 1 < 2 < 2 2  , 

S 1 ( i f ) = 0  i f 2 2 < x  

and for j = n 
S,(~) = 0 if 2 ~ , _ ~ ,  

S,(,2) = ( 2 - 2 , _ 1 ) / h  if 2 , _ 1 < 2 < 2 "  

Continui ty  at 2 = h  of g(2), given by (6.3) and (6.4), leads to 

c o -  9 1 - 9 o  9o 
h 27r log h 

where 

C I - ,t]O �9 

(6.6) 

(6.7) 

(6.8) 

In the interval [E, oe) we introduce a new variable t =  1/2. The new interval [0, E 1] is 
subdivided into m equal parts of length k, t j= jk  and ink= E -  1. In the subinterval  [0, k] the 
function f ( t -  1) is approximated  by 

f ( t  -1) = ~ - l t }  log t + C l t  ~,  (6.9) 

in accordance with (4.17). The integral which has to be evaluated is 

(2n) 1 l o g l 2 - t - l l f ( t - 1 ) t - 2 d t .  
o 

The first term of (6.9) leads to the integral 

12 = l o g l 2 - t - 1 1  t - ~ l o g  tdt  = 4k ~ l o g ( ( 2 k ) - l - u  2) log udu 
0 

- 4k ~ log 2 + 2k ~ log k log ( (~k)- i  _ 1) + 2 2 -  ~ log k log {(1 + (k2) ~) 

x (1 - (k2)~) - 1} _ 16k~+ 2k~ log k log :~. 

For  2 = l /k  and 2 = 0 the integral appearing in the first term of the r ight-hand side has been 
evaluated analytically ; for other  values of 2 the Gaussian integration formulae of  [6] have been 
used. 

In the interval [k, E -  1] the function f ( t -  1) has been approximated  by 

f ( t - 1 ) =  t ~ ~ f~Sj(t) (6.10) 
j = l  

where 

Sj(t) = ( t - t j _ l ) / k  if t j _ l ~  t<= tj ,  ] 

S j ( t ) = - ( t - t j + l ) / k  if t j < t < t j + l , /  (6.11) 

Sj(t) = 0 for all other  t .  

holds again for a l l j  except j =  1 a n d j  = m. In these two cases formulae which are analogous This 
to (6.6) and (6.7) are valid. 

The factor t ~ in (6.10) is due to the factor x ~ in the asymptot ic  expansion (4.17). 
Cont inui ty  at t = k of the function f ( t -  1), given by (6.9) and (6.10) yields 

1 1 log k.  Cl=~L- (6.12) 

The integral equat ions (6.2) now lead to a linear algebraic set of  equat ions for the n +  m 
unknowns  9j, J = 0, 1, ..., n and f~, j = 1, 2, ..., m where 

9, = fm  - E - ~ .  

There  are also n + m equat ions which are obta ined by taking in eq. (6.2) 2 =jh, j = O, 1 . . . . .  n - 1 
and 2 = 1/tic, j = 1, 2 . . . .  , m. 
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The finest subdivision which has been applied was n = m = 40. Calculat ions were also made  
with n = m = 20 and Richardson 's  extrapolation,  assuming the error  to be O (h 2) was performed. 

7. Results 

In figure 2 results for the dimensionless vorticity have been presented. This gives at the same 
time the shear stress and the slip velocity since 

shear stress = pv Ou/Oy = 2F . �89  2 , 

slip velocity = u = tcUF.  

The hor izontal  coordinate  is ~ = (x/L) ~ = R @  
It is clearly seen in fig. 2 that the results for ~c > 0 deviate f rom those for ~c = 0 only in the 

Knudsen  region and that  this region has a size which in the i -coord ina te  is roughly  given by 
= 2K ~. Moreover  it follows from fig. 2 that  the shear stress at the leading edge is inversely 

propor t iona l  to ~c ~. 
In  fig. 3 the solution of the integral equat ion is compared  with solutions obta ined for some 

4 

3 

2 

I 

0 
0 

l I [ [ 

~ K = O  

~ K :0.01 

I( :0.1 

I 
0 .5  I 

Figure 2. The vorticity at the plate in slip flow. 
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Figure 3. Comparison of the shear stress with the solution of the integral equation (4.14). 
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1c-values. The  so lu t i on  of the in tegra l  e q u a t i o n  clear ly  forms  the  l imi t  for K ~ 0  as s h o u l d  be  
the  case. I t  fol lows f rom eqs. (4.3), (4.2), (4.8), (4.11) a n d  (4.13) t ha t  

7 = A { X - ~ - f ( f f ) } / 2  where  a = 0.755 a n d  ~ = x / x L .  (7.1) 

A c c o r d i n g  to (4.1) a n d  (4.5) the  h o r i z o n t a l  c o o r d i n a t e  in  fig. 3 is 2 =  r whi le  the  ver t ica l  
c o o r d i n a t e  is 7 (2) = F~: ~. 

The  a s y m p t o t i c  b e h a v i o u r  of  the  s o l u t i o n  of  the  in tegra l  e q u a t i o n  for 2 ~ ~ is, a cco rd ing  to 
eq. (7.1), g iven  by  0.377/2. 

The  so lu t i ons  for ~: u n e q u a l  0 have  as a s y m p t o t i c  b e h a v i o u r ,  see eq. (2.13) a n d  (2.7), 
f " ( 0 ) / 2 = 0 . 3 3 2 / 2 ,  b u t  this b e h a v i o u r  is a t t a i n e d  o n l y  for large va lues  of  2 w h e n  ~: is small .  

F ina l ly ,  fig. 4 shows the  ve loc i ty  b o t h  a h e a d  a n d  a l o n g  the  p la te  for y = 0. I t  fol lows f rom the  
s o l u t i o n  of the  in tegra l  e q u a t i o n  tha t  in  first a p p r o x i m a t i o n  the  slip veloci ty  a t  the  l ead ing  edge 
is g iven  b y  

u/U = B = 0.4774~ "~ . (7.2) 

0.6 

u /U  

0.4 

0.2 

-2  -1 0 1 
0 

Figure 4. The velocity at the line of symmetry y= 0. 
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TABLE 1 

The vorticity near the leading edge of a flat plate in slip flow 

Complete Navier-Stokes equations Asymptotic 
integral 

tc=O lc=0.01 to=0.1 to- 1 equation (4.14) 

F ~ F ~ F ~ F 2 7 

0 oo 0 4.66 0 1.46 0 0.414 0 
0.103 3.65 0.012 4.62 0.046 1.430 0.216 0.399 0.387 
0.214 1.77 0.048 4.14 0.117 1.335 0.482 0.364 0.548 
0.333 1.14 0.136 2.69 0.241 1.125 0.830 0.314 0.775 
0.460 0.825 0.312 1.29 0.457 0.802 1.319 0.251 1.095 
0.745 0.512 0.641 0.610 0.836 0.480 2.059 0.182 1.342 
1.264 0.303 1.254 0.308 1.523 0.261 3.279 0.119 1.732 
2.485 0.153 2.486 0.153 2.881 0.133 5.555 0.068 2.070 
5.647 0.064 5.459 0.067 6.128 0.059 10.79 0.033 2.739 

15.97 0.02~ 16.71 0.020 18.34 0.019 29.84 0.011 3.873 
106.5 0.003 112.0 0.003 121.0 0.003 184.9 0.002 5.477 

10.95 

0.4774 
0.4328 
0.4045 
0.3636 
0.3099 
0.2742 
0.2290 
0.1909 
0.1454 
0.1021 
0.0713 
0.0349 
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Table 1 contains some numerical results. From these one might conclude to a numerical 
value in (7.2) which is slightly smaller. However, it is thought that the finite difference procedure 
used for the solution if ~ ~ 0 does not completely satisfactorily take into account the logarithmic 
term present in ~u and F (this term would appear when further terms had been written in (3.16) 
and (3.17); see also the expansion of f(2) for ff-~0 in Sect. 4). Therefore the value in (7.2) has 
been taken from the solution of the integral equation. 
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