180 research outputs found

    Un arbre au désert : Acacia raddiana

    Get PDF

    Assessment of the interplay between blood and skin vascular abnormalities in adult purpura fulminans

    Get PDF
    RATIONALE: Purpura fulminans in adults is a rare but devastating disease. Its pathophysiology is not well known. OBJECTIVES: To understand the pathophysiology of skin lesions in purpura fulminans, the interplay between circulating blood and vascular alterations was assessed. METHODS: Prospective multicenter study in four intensive care units. Patients with severe sepsis without skin lesions were recruited as control subjects. MEASUREMENTS AND MAIN RESULTS: Twenty patients with severe sepsis and purpura fulminans were recruited for blood sampling, and skin biopsy was performed in deceased patients. High severity of disease and mortality rates (80%) was observed. Skin biopsies in purpura fulminans lesions revealed thrombosis and extensive vascular damage: vascular congestion and dilation, endothelial necrosis, alteration of markers of endothelial integrity (CD31) and of the protein C pathway receptors (endothelial protein C receptor, thrombomodulin). Elevated plasminogen activating inhibitor-1 mRNA was also observed. Comparison with control patients showed that these lesions were specific to purpura fulminans. By contrast, no difference was observed for blood hemostasis parameters, including soluble thrombomodulin, activated protein C, and disseminated intravascular coagulation markers. Bacterial presence at the vascular wall was observed specifically in areas of vascular damage in eight of nine patients tested (including patients with Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, and Pseudomonas aeruginosa infection). CONCLUSIONS: Thrombi and extensive vascular damage with multifaceted prothrombotic local imbalance are characteristics of purpura fulminans. A "vascular wall infection" hypothesis, responsible for endothelial damage and subsequent skin lesions, can be put forward

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Real-time PCR-based assay to quantify the relative amount of human and mouse tissue present in tumor xenografts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xenograft samples used to test anti-cancer drug efficacies and toxicities in vivo contain an unknown mix of mouse and human cells. Evaluation of drug activity can be confounded by samples containing large amounts of contaminating mouse tissue. We have developed a real-time quantitative polymerase chain reaction (qPCR) assay using TaqMan technology to quantify the amount of mouse tissue that is incorporated into human xenograft samples.</p> <p>Results</p> <p>The forward and reverse primers bind to the same DNA sequence in the human and the mouse genome. Using a set of specially designed fluorescent probes provides species specificity. The linearity and sensitivity of the assay is evaluated using serial dilutions of single species and heterogeneous DNA mixtures. We examined many xenograft samples at various in vivo passages, finding a wide variety of human:mouse DNA ratios. This variation may be influenced by tumor type, number of serial passages in vivo, and even which part of the tumor was collected and used in the assay.</p> <p>Conclusions</p> <p>This novel assay provides an accurate quantitative assessment of human and mouse content in xenograft tumors. This assay can be performed on aberrantly behaving human xenografts, samples used in bioinformatics studies, and periodically for tumor tissue frequently grown by serial passage in vivo.</p

    DNA methylation dynamics of the human preimplantation embryo

    Get PDF
    In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably distributed across the genome, with local, cell type-specific regulation directed by DNA binding factors1-3. This comparatively static landscape dramatically contrasts the events of fertilization, where the paternal genome is globally reprogrammed. Paternal genome demethylation includes the majority of CpGs, though methylation is maintained at several notable features4-7. While these dynamics have been extensively characterized in the mouse, only limited observations are available in other mammals, and direct measurements are required to understand the extent to which early embryonic landscapes are conserved8-10. We present genome-scale DNA methylation maps of human preimplantation development and embryonic stem cell (ESC) derivation, confirming a transient state of global hypomethylation that includes most CpGs, while sites of persistent maintenance are primarily restricted to gene bodies. While most features share similar dynamics to mouse, maternally contributed methylation is divergently targeted to species-specific sets of CpG island (CGI) promoters that extend beyond known Imprint Control Regions (ICRs). Retrotransposon regulation is also highly diverse and transitions from maternally to embryonically expressed, species-specific elements. Together, our data confirm that paternal genome demethylation is a general attribute of early mammalian development that is characterized by distinct modes of epigenetic regulation

    Prolonged Exposure to a Mer Ligand in Leukemia: Gas6 Favors Expression of a Partial Mer Glycoform and Reveals a Novel Role for Mer in the Nucleus

    Get PDF
    Mer tyrosine kinase is ectopically expressed in acute lymphoblastic leukemia and associated with enhanced chemoresistance and disease progression. While such effects are generally ascribed to increased engagement of oncogenic pathways downstream of Mer stimulation by its ligand, Gas6, Mer has not been characterized beyond the scope of its signaling activity. The present study explores Mer behavior following prolonged exposure to Gas6, a context similar to the Gas6-enriched microenvironment of the bone marrow, where a steady supply of ligand facilitates continuous engagement of Mer and likely sustains the presence of leukemic cells. Long-term Gas6 exposure induced production of a partially N-glycosylated form of Mer from newly synthesized stores of protein. Preferential expression of the partial Mer glycoform was associated with diminished levels of Mer on the cell surface and altered Mer localization within the nuclear-soluble and chromatin-bound fractions. The presence of Mer in the nucleus is a novel finding for this receptor, and the glycoform-specific preferences observed in each nuclear compartment suggest that glycosylation may influence Mer function within particular subcellular locales. Previous studies have established Mer as an attractive cancer biologic target, and understanding the complexity of its activity has important implications for potential strategies of Mer inhibition in leukemia therapy. Our results identify several novel features of Mer that expand the breadth of its functions and impact the development of therapeutic modalities designed to target Mer

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Energy applications of ionic liquids

    Get PDF
    Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cation–anion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermoelectrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 °C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO2 absorbents for post-combustion CO2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities
    corecore