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Abstract

In mammals, cytosine methylation is predominantly restricted to CpG dinucleotides and stably

distributed across the genome, with local, cell type-specific regulation directed by DNA binding

factors1-3. This comparatively static landscape dramatically contrasts the events of fertilization,

where the paternal genome is globally reprogrammed. Paternal genome demethylation includes

the majority of CpGs, though methylation is maintained at several notable features4-7. While these
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dynamics have been extensively characterized in the mouse, only limited observations are

available in other mammals, and direct measurements are required to understand the extent to

which early embryonic landscapes are conserved8-10. We present genome-scale DNA methylation

maps of human preimplantation development and embryonic stem cell (ESC) derivation,

confirming a transient state of global hypomethylation that includes most CpGs, while sites of

persistent maintenance are primarily restricted to gene bodies. While most features share similar

dynamics to mouse, maternally contributed methylation is divergently targeted to species-specific

sets of CpG island (CGI) promoters that extend beyond known Imprint Control Regions (ICRs).

Retrotransposon regulation is also highly diverse and transitions from maternally to embryonically

expressed, species-specific elements. Together, our data confirm that paternal genome

demethylation is a general attribute of early mammalian development that is characterized by

distinct modes of epigenetic regulation.

We generated genome-scale methylation maps of human preimplantation using reduced

representation bisulfite sequencing (RRBS) to accommodate minimal DNA inputs7. We

thawed and screened morphologically normal cleavage stage embryos and blastocysts to

represent early and late preimplantation, two replicates of pooled, matched Inner Cell Mass

(ICM) and Trophectoderm (TE), motile sperm from four unrelated, healthy donors, and fetal

tissues (Extended Data Fig. 1). To estimate the time, extent, and targets of global

remethylation, we generated derivation time series of three human ESC lines, collecting the

primary outgrowth, first, and fifth passage per line. On average, replicates showed high

reproducibility and captured 1,753,958 CpGs of methylation data at 10× coverage (Extended

Data Fig. 2).

We noted two distinguishable architectures for DNA methylation across this time series:

somatic-like CpG density-dependent bimodality in sperm, ESCs, and fetal tissues, and

extensive CpG density-independent hypomethylation in preimplantation embryos (Fig. 1a).

The substantial intermediate methylation in sperm reflects disparate repetitive element

regulation, though non-repetitive sequences still fit the somatic paradigm11 (Fig. 1b).

Almost no hypermethylated CpGs persist into cleavage, with residual methylation

diminishing further into the blastocyst indicating that the embryonic landscape is rapidly

established, prior to the 3rd embryonic division (Fig. 1b, Extended Data Fig. 2f). Without

access to human epiblasts, in vivo characterization of global remethylation is unavailable,

but cross-species comparison between mouse epiblast and human ESCs suggest that human

ESCs are a reasonably proxy for postimplantation pluripotency (Extended Data Fig. 3).

Notably, within primary ESC outgrowths, global remethylation is nearly complete, including

for intermediately methylated repetitive elements apparent in sperm (Fig. 1b).

Despite predominant hypomethylation, erasure is not the de facto fate of all loci. Ten

dynamic patterns emerged by k-means clustering of non-repetitive, 100 bp genomic tiles.

45% of sperm hypermethylated tiles retain some methylation over preimplantation, and 23%

display high enough levels in cleavage embryos to be biparentally inherited and maintained

(Fig. 1c). Local maintenance is significantly weighted to gene bodies: only 31% of 40,486

sperm hypermethylated intergenic tiles are ≥0.2 methylated in cleavage, compared to 57%

or 59% of exons or introns, respectively (Fig. 1d, e). Frequently, gene body methylation

Smith et al. Page 2

Nature. Author manuscript; available in PMC 2015 January 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



extends for tens to hundreds of kilobases within a single gene (Fig. 1f). Sites of retained

embryonic methylation suggest residual DNA methyltransferase activity within a phase

where maintenance appears otherwise impeded12.

We incorporated recently published RNA-seq data to interpret the relationship between

DNA methylation and expression13 (Extended Data Table 1). Despite global

hypomethylation, the canonical negative correlation between promoter methylation and gene

expression extends to preimplantation, though the overall range in promoter methylation is

contracted (Extended Data Fig. 4a). Few demethylated promoters are transcribed, suggesting

that promoter demethylation largely reflects the global trend (Extended Data Fig. 4b).

However, demethylated promoters are more frequently upregulated than repressed and

include POU5F1, whose embryonic induction is essential for development14 (Extended

Data Fig. 4c, d). Thus, our preimplantation data support models where distinct mechanisms

may regulate global versus targeted reprogramming15.

The global DNA methylation dynamics of the human embryo closely mirror those of mouse,

with sharp transitions both into and out of preimplantation7,16 (Fig. 2a). We investigated the

behavior of orthologous exons within our full mouse timeline, predicated on their human

dynamics. Surprisingly, simply sorting mouse exons according to the dynamics of their

human orthologues recapitulated similar trends in sperm and over preimplantation (Fig. 2b).

In mouse, demethylated exons are erased early, with moderate passive depletion over

cleavage (Fig. 2c, d). Alternatively, exons that maintain methylation behave similarly in

mouse and are hypermethylated in both gametes (Fig. 2c, d). Intron dynamics recapitulated

these trends, but only after repetitive elements were removed from methylation estimates

(Extended Data Fig. 5). Thus, both species pass through an equivalent global

reprogramming with highly similar kinetics, while many orthologous regions maintain

methylation that decays passively.

Transient, maternally-inherited monoallelic methylation has been previously observed in

mouse5-7. To identify candidate loci in human without access to oocytes, we searched for

regions that are significantly more methylated in preimplantation embryos than in sperm,

since this methylation would likely be of maternal origin (Extended Data Fig. 6a, Methods).

Using these criteria, we identify 5,265 candidate maternal DMRs, including most canonical

ICRs. We clustered these regions by their resolution in ESCs and found that most are

preimplantation-specific and either hyper or hypomethylated in somatic tissue (Fig. 3a). The

location and CpG density of DMR tiles depends on their resolution, with somatically

hypomethylated DMRs substantially enriched for CGI-containing promoters, while

somatically hypermethylated are more likely to be intragenic and distributed further

downstream (Fig. 3a, Extended Data Fig. 6b,c). To confirm that these signatures represent

true monoallelic, imprint-like maintenance, we generated RRBS libraries of two unrelated,

single blastocysts and identified CpGs that could be assigned to each allele, nearly all of

which were monoallelically methylated (Fig. 3b, Extended Data Fig. 7).

Given that maternal DMRs in mouse are also enriched for CGIs, we next examined the

conservation of targeted loci between species (Fig. 3c). We found that 795 and 293 CGIs

behave as transient DMRs in human and mouse, respectively, with substantially more
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resolving to hypermethylation in human (Fig. 3d and Extended Data Table 2). Notably,

Human DMRs resolving to hypomethylation are more likely to be annotated as CGIs in

mouse than those resolving to hypermethylation (Extended Data Fig. 6d,e). We restricted

our comparison to DMRs that share CGI status in both species and found that maternally

contributed, preimplantation-specific DMRs are notably divergent, with only 7.5% found in

human equivalently regulated in mouse. No obvious trend distinguished shared from

species-specific signatures, though several, such as the somatic promoter of DNMT1,

indicate conserved regulatory utility17 (Extended Data Fig. 8a). The disparity of maternal

methylation targeting contrasts true ICRs, which are generally conserved18 (Fig. 3e,

Extended Data Fig. 8b). Moreover, hypomethylation-resolving DMRs specific to one

species are constitutively hypomethylated in the other, suggesting these signatures are

frequently and diversely targeted (Fig. 3f).

We next investigated species-specific repetitive elements, incorporating RNA-seq data to

interpret DNA methylation's role in their regulation13. In human sperm, repetitive elements

are frequently incompletely methylated or hypomethylated11. Long Terminal Repeat-

containing elements (LTRs)are unexpectedly bimodal, with only a fraction hypermethylated

and most displaying gametic escape that persists over preimplantation (Extended Data Fig.

9a). Long Interspersed Nuclear Elements (LINEs)are generally highly methylated in sperm,

demethylated in the early embryo, with some partial remethylation in hESCs and complete

hypermethylation in somatic cells (Extended Data Fig. 9b). Finally, Short Interspersed

Nuclear Elements (SINEs), which represent the majority of human genome repetitive

content, exhibit a uniform global behavior (Extended Data Table 3). Though intermediately

methylated in sperm, their dynamics over preimplantation were otherwise similar to

intergenic sequences in general (Extended Data Fig. 9c). Alternatively, diverse LTR and

LINE subfamilies are dynamic, providing several examples where DNA methylation

appears to coordinate specific regulatory transitions (Extended Data Tables 4 and 5).

We found that the bimodality of LTR methylation is explained by species-specific ERV1

elements. Alternatively, the ERVK family generally maintained high methylation levels,

similar to observations in mouse and suggesting conserved, constitutive targeting4 (Fig. 4a,

Extended Data Fig. 9d-g). After fertilization, expression sharply transitioned from a MalR

dominated early cleavage state resembling the oocyte to one composed of ERV1 and ERVK

elements in the blastocyst and ESCs (Fig. 4b). We were surprised to find that some ERV1s

appear to be induced later, following global remethylation in ESCs, indicating a transition in

the specific subfamilies that are expressed. Transcripts present early in preimplantation are

generally from gametically hypomethylated ERV1 elements that are downregulated prior to

de novo methylation (Fig. 4c, d). Moreover, for these elements, methylation and expression

are negatively correlated, indicating discriminatory targeting for even extremely related

sequences (Extended Data Fig. 9h). In contrast, the LTR7 subfamily is hypermethylated in

sperm, rapidly demethylated, and upregulated in the blastocyst and hESCs (Fig. 4c, d).

LTRs are rarely dynamic outside of this early versus late preimplantation axis: either they

are already expressed in the oocyte and silenced later or are induced following

demethylation and remain expressed in ESCs. Notably, this latter dynamic includes a limited

number of recently emergent, unrelated subfamilies19-21.
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Compared to LTRs, LINEs maintain higher methylation levels and only the primate-specific

L1PA phylogeny is dynamically expressed (Fig. 5a, Extended Data Fig. 9c). As the only

actively transposing lineage in humans, L1PA subfamilies emerged as a linear phylogeny22.

We found that the human-specific L1HS and its two closest ancestors, L1PA2 and L1PA3,

are demethylated early, while older elements maintain higher embryonic methylation (Fig.

5b). Correspondingly, nearly all embryonic transcription could be attributed to these three

youngest subfamilies (Fig. 5c, Extended Data Fig. 10a). Given the homology between

subfamilies, we searched for sequence composition changes that may explain the

preimplantation-specific escape of younger elements. We aligned 5′ UTRs of full-length

L1PA7 to L1HS and compared sequences that demarcated demethylated L1PA3-descended

elements from constitutively targeted ancestors. The largest discrete difference corresponds

to an ∼130 bp deletion found within the L1PA3 lineage itself that separates older elements

from the L1HS progenitor L1PA3a23 (Fig. 5d, Extended Data Fig. 10b,c). Intriguingly, the

presence or absence of this region isolates two disparately regulated subpopulations and

marks the transition to embryonic expression (Fig. 5e,f, Extended Data Fig. 10d). This

adaptation may represent a specific moment in the evolutionary progression of the L1PAs

when emerging elements evaded a seemingly sequence-directed, repressive mechanism.

Whether older subfamilies retain expression or transposition potential without active

silencing, or if this signature reflects a vestigial, host genome adaptation that is no longer

required, remains to be investigated.

We present basepair resolution maps of DNA methylation as it is dynamically reconfigured

during human early development. These data identify a set of transient, maternally

contributed methylation at CGI promoters, the resolution of which suggest independent

modes of acquisition: male germline specific protection against methylation or de novo

targeting in the oocyte of otherwise canonically unmethylated CGIs24. Both are common

and show poor conservation compared to classic ICRs, indicating that short-lived, parent-

specific signatures are less evolutionarily constrained than those persisting after

implantation. We find that repetitive element regulation is strikingly diverse in human, far

more so than in mouse, with gametically hypomethylated LTR subfamilies present in the

oocyte and early embryo and others sharply demethylated and induced embryonically. For

LINEs, the stepwise phylogeny within the primate-specific L1PA lineage pinpoints a

specific, adaptive transition. Because L1HS elements remains transpositionally active,

including somatically in numerous cancers, the targeting of epigenetic silencing machinery

during preimplantation may be relevant in identifying the root cause of their aberrant

induction later25. Understanding the regulatory principles inherent to the early embryo will

improve continuing efforts to evaluate complex traits with unclear modes of epigenetic

inheritance. Future work to characterize the mechanisms that impose these diversely

targeted embryonic methylation patterns will illuminate their contribution to normal human

development and disease.
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Methods

IRB Approval

Harvard University institutional review board (IRB) and Embryonic Stem Cell Research

Oversight (ESCRO) Committee approval was obtained for both the collection and

experimental use of surplus embryos resulting from infertility treatment and donated for

research.

The Harvard University and Beth Israel Deaconess Medical Center institutional review

boards both determined that collection, preparation, and experiments using discarded human

gametes was not human subjects research and therefore did not require a full IRB review.

Consent Process

All embryos used in this study had previously been donated and stored at Harvard

University. Couples donating surplus embryos for the purpose of research signed an

extensive consent form at the time of their donation. These consent forms were approved by

the Harvard University IRB. The authors did not have access to any identifying personal

health information.

Gametes were obtained from patients who signed a consent form authorizing the

experimental use of discarded gametes. These consent forms were scanned and stored in the

patient's electronic medical record. The authors did not have access to any identifying

personal health information.

Human sperm collection and preparation

Semen samples were collected from five healthy patients between the ages of 30-34

undergoing an evaluation for infertility. Each male was a non-smoker with a body mass

index < 30 kg/m2. Semen samples were collected by masturbation after 2 days of abstinence.

A semen analysis was performed by an experienced andrologist confirming a normal sperm

concentration (> 20 million/ml), normal motility (>50% motile), and normal morphology

using the Kruger strict criteria (≥4% normal forms).

A PureCeption gradient solution (PureCeption 100% Isotonic Solution, Quinn's Advantage

Medium with HEPES, In-Vitro Fertilization Inc) was prepared to purify each sperm sample

and remove somatic cell contaminants. The gradient consisted of two layers of 1ml of

PureCeption: 90% and 47% in a 15ml conical tube.

2ml of the semen sample was placed on top of the gradient. The gradient was centrifuged at

1100 rpm for 20 minutes and the supernatant removed. 1ml of sperm washing medium

(Quinn's Sperm Washing Medium, In Vitro Fertilization Inc) was used to re-suspend the

pellet. The sample was then centrifuged at 750 rpm for 10 minutes. The supernatant was

removed. 0.1ml of the remaining pellet of sperm was transferred to a 1.7ml SafeSeal

Microcentrifuge Tube (Sorenson Bioscience) and placed immediately at minus 80 degrees

Celsius.
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Human embryo thawing

Excess human embryos created via in vitro fertilization for the treatment of infertility were

previously donated by patients undergoing assisted reproduction and stored in liquid

nitrogen at minus 196 degrees Celsius.

Embryo culture dishes were set up using 60mm culture dishes (BD Falcon) and eight 30

microliter drops of Global embryo culture media (LifeGlobal) plus 15% Plasmanate

(Talecris) overlaid with 10ml of oil (SAGE). Rinse dishes were also set up using 2.5ml of

embryo culture media plus 15% Plasmanate. These dishes were equilibrated overnight at 37

degrees Celsius, 5% CO2.

Both cleavage stage embryos and blastocysts were thawed using the Quinn's Advantage

Embryo Thaw Kit (SAGE). This kit contains three solutions – 0.5M sucrose, 0.2M sucrose,

and diluent. The straw or the vial containing the cryopreserved embryos was placed in a

water bath at 30 degrees Celsius for 2 minutes. The embryos were then expelled from the

straw by removing the heatsealed end or transferred from the vial using a Pasteur pipette to a

clean tissue culture dish on a heated stage. The embryos were located and thawed according

to the manufacturer's instructions.

Each embryo was rinsed and then placed in a single drop in the embryo culture dishes

described above. Embryos were cultured in a humidified atmosphere at 37 degrees Celsius

and 5% CO2 in air.

Embryo evaluation

Cleavage stage embryos were evaluated 2-4 hours after the thawing process. Blastocysts

were evaluated 18-24 hours after the thawing process. Embryos were evaluated using a

Nikon Eclipse 80i microscope and images of each embryo were obtained at 40× using the

Hamilton Thorne Clinical Laser Software. These images were then independently evaluated

by two senior embryologists. Survival and quality were determined and an embryo was only

included in this study if both embryologists agreed upon viability.

Human embryo collection

Single viable embryos were passed through several rounds of additional defined KSOM

media (Millipore) under mineral oil prior to an Acidic Tyrode's Solution (Sigma) wash to

dissolve the zona pellucida, somatic cellular debris, and additional sperm. Single embryos

were then rinsed in clean media drops before pooling of the embryos, assessment for the

absence of contaminants and snap freezing in minimal volume.

ICM/TE isolation of human and mouse embryos

Single human and mouse embryos exhibiting a clear ICM were isolated and the zona

pellucida carefully removed to preserve the integrity of the blastocoel. They were then

oriented using standard micromanipulation equipment (Narishige) and oriented with a clear

plane available to separate the ICM from the expanded TE dissected using a Hamilton

Thorne XYClone laser with 300 μs pulsing at 100% intensity. Short pulses progressed over

the cleavage plane until the ICM and TE compartments were cleanly separated, at which
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point both pools were separated for collection in clean microdrops, serially washed and snap

frozen in minimal volume.

Derivation of new hESC lines

Human embryo culture and hESC derivations were carried out as previously described26.

Briefly, cleavage stage human embryos were thawed using Quinn's Advantage Thaw Kit

(SAGE) and cultured in Global medium (LifeGlobal) supplemented with 15% Plasmanate

(Talecris) for 2-3 days until the blastocyst stage. For hESC derivation, the visible ICM was

separated from the blastocyst by exposing the trophectoderm cells to 20-30 cell lethal laser

pulses from a Xyclone laser (Hamilton Thorne Biosciences). The isolated ICM was then

plated on a layer of gamma-irradiated mouse embryonic fibroblasts (MEFs) in derivation

media consisting of KO-DMEM (Life Technologies), 15% KO-SR (Life Technologies),

2.5% Fetal Bovine Serum (FBS) (Hyclone), 2mM Glutamax, 1% non-essential amino acids,

50units/ml penicillin and 50μg/ml streptomycin (Life Technologies), 0.055mM β-

mercaptoethanol (Life Technologies), 10ng/ml bFGF (Millipore). Ten to twelve days after

ICM plating, the embryonic stem cell outgrowth (passage 0) was mechanically dispersed

with half of the outgrowth plated onto a new MEF feeder layer for hESC line establishment

(passage 1), and half used for methylation analysis. The human ESC colonies that resulted

following plating were continuously mechanically passaged. The pluripotency of the lines

was confirmed by staining for pluripotency markers and by in vitro differentiation into the 3

germ layers. The lines were registered with the Harvard University ESCRO Committee as

HUES 71, HUES 72 and HUES 73.

Isolation of mouse E6.5 epiblast and extraembryonic ectoderm

Isolation of E6.5 epiblast and extraembryonic ectoderm was adapted from Ref. 27.

Hormone-primed C57Bl6/J mice were euthanized 6 days after mating with 129S1/SvIMJ

males. Deciduae were removed from the uterine horn and the full embryo extruded and

placed under mineral oil in KSOM media using a pulled glass capillary. Residual maternal

contaminants were removed by continuous mouth pipetting, after which the epiblast and

extraembryonic ectoderm were bisected using an obliquely cut flame drawn glass capillary

and the respective tissues segregated in separate KSOM drops. Visceral endoderm was

removed from either epiblast or extraembryonic ectoderm by incubation in 0.5% trypsin/

2.5% pancreatin (Sigma) dissolved in PBS for 20 minutes at 4°C, after which they were

returned to KSOM medium drops and incubated for an additional 5 minutes at room

temperature. Using a glass capillary pulled to a diameter slightly less than that of the

embryo, visceral endoderm was removed by rapid aspiration and expulsion. Cleaned epiblast

or extraembryonic ectoderm tissue were then serially washed through several additional

drops of KSOM prior to pooling and snap freezing at minimal volume.

Library Preparation and Sequencing

RRBS libraries were generated as described and sequenced on an Illumina Genome

Analyzer II before alignment and analysis7. The sequencing reads were aligned to the

Human Genome Build 19 (hg19) for human samples and Mouse Genome Build 37 (mm9)

for mouse samples using a custom computational pipeline taking into account the strain

background for mouse samples. The data set was supplemented with mouse early
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development methylation profiles from Ref. 7 and human fetal somatic methylation profiles

from the NIH Epigenomics Roadmap Project. Human ESC lines H1, H9, HUES64, and

HUES6 were used for comparison with our newly derived hESC lines. Sample quality was

assessed by looking at coverage numbers (i.e. number of loci present and coverage of loci)

and similarity between biological replicates using pearson correlation, euclidean distance,

and visual inspection of methylation histograms (see Extended Data Figs. 1 and 8)

Estimating methylation levels

The methylation level of each sampled cytosine was estimated as the number of reads

reporting a C, divided by the total number of reads reporting a C or T. Single CpG

methylation levels were limited to those CpGs that had at least 10-fold coverage. For 100bp

tiles, reads for all the CpGs that were covered more than 5-fold within the tile were pooled

and used to estimate the methylation level as described for single CpGs. The CpG density

for a given single CpG is the number of CpGs 50bp up- and downstream of that CpG. The

CpG density for a 100bp tile is the average of the CpG density for all single CpGs used to

estimate methylation level in the tile.

The methylation level reported for a sample is the average methylation level across

replicates. A replicate will contribute to the average only if it meets the coverage criteria

within the replicate. Technical replicates were averaged before contributing to the sample

average.

Genomic features

For mouse, high density CpG promoters (HCP), intermediate density CpG promoters (ICP),

low density CpG promoters (LCP), CpG island, and DMR annotations were taken from Ref.

28. LINE, LTR, and SINE annotations were downloaded from the UCSC browser (mm9)

RepeatMasker tracks. Gene annotations were downloaded from the UCSC browser (mm9)

refseq track. Promoters (TSSs) are defined as 1kb up and downstream of the TSS and are

parsed from refseq annotation. Promoters for all isoforms are included. Enhancer

annotations were taken from Table S1 from Ref. 29. Corresponding human annotations were

downloaded from the UCSC browser for hg19. Phastcons (Placental, PCE) coordinates were

downloaded from the UCSC browser phastcons hg19 track. Human imprinting control

regions were taken from Ref. 30.

In each case, the methylation level of an individual feature is estimated by pooling read

counts for all CpGs within the feature that are covered greater than 5-fold, and levels are

only reported if a feature contains at least 5 CpGs with such coverage (in contrast to 100bp

tiles where no minimum number of CpGs is required). A tile is annotated as a genomic

feature if any portion of the tile overlaps with the feature and thus, may be annotated by

more than one feature (e.g. the same can be annotated as both a promoter and a gene).

Gene Expression Analysis

Raw RNA-seq data was downloaded from the gene expression omnibus from accession

GSE36552 for human oocytes, zygotes, 2-cell, 8-cell, morulae, late blastocyst, hESC

passage 0 and hESC passage 10, taken from Ref. 13. For all samples but morulae and late
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blastocyst, data for all single cells were pooled before alignment. Morulae and late

blastocyst samples were pooled according to their respective embryos. Duplicate reads were

removed before alignment. Alignment was performed using TOPHAT against human

genome assembly 19 with default settings. Cufflinks was used for quantification and

statistical tests of significant change using default settings.

Retrotransposon expression analysis

Alignment was performed using BWA against human genome assembly 19 with default

settings. Repeat subfamily FPKM is the sum of the number of reads that align to each repeat

element for the subfamily divided by the genome coverage of the subfamily in kilobases and

normalized by the total number of reads in the sample. Repeat subfamily FPM is the same as

FPKM without normalizing to the subfamily's genome coverage. Samtools was used to find

candidate repeat alignments and the CIGAR string was parsed to determine if the read

overlapped with the repeat element. One L1PA6 element (chr2: 49454725- 49460932)

contained an unusual tall, short peak of read density and was excluded from analysis.

The L1PA consensus plot for expression was produced by using the consensus coordinates

for the element from the UCSC genome browser to align the reads from the element's

alignment to the consensus sequence. Read count is the read coverage at each position in the

consensus sequence divided by the total number of reads in the sample. Note that we did not

use a multiple sequence alignment of the repetitive elements so this is not a fully accurate

representation of expression over the consensus. For example, if the element has an insertion

compared to the consensus sequence, then reads that overlap the insertion will contribute to

read density on the consensus. The genomic sequence density plot was generated in a similar

manner.

Orthology between human and mouse

The 46 mammals multiple sequence alignment downloaded from the UCSC browser was

used to find orthologous regions from hg19 to mm9. For 100 bp tiles, the methylation for the

corresponding region in mouse was used for comparison regardless of the length of the

corresponding region. For genomic features, the methylation level of the corresponding

region in mouse was used unless the mouse coordinates overlapped a mouse annotation of

the same type. In the latter case, the methylation level of the corresponding feature was used

instead. The 60 mammals multiple sequence alignment downloaded from the UCSC browser

for mm10 was used to find orthologous regions from mouse to human by first translating the

mm9 genomic feature coordinates to mm10, and then following the same procedure above.

RRBS selectively enriches for a consistent fraction of CpG dense genomic fragments within

a given species, and as such provides genome-scale information versus genome-wide. In

human and mouse, the coverage for CGIs is 87.4% and 89.6%, for Exons, 11.3% and 8.8%,

and for Introns, 26.4% and 13.4%, respectively. In general, for both species, most features

are captured at similar frequencies, but far more SINEs are captured in human than in

mouse. Of the CpG islands that are captured by RRBS in human, 82.7% align to the mouse

genome, and 53.9% align and share CGI status in mouse, Out of the loci that aligned to the

mouse genome, mouse RRBS captured 93.6% of shared CGIs and 72.9% of aligned regions
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not annotated as CGIs in mouse. 85.2% of RRBS-captured human exons align to mouse

exons and, of these, 52.7% are captured by mouse RRBS. For introns, 86.1% of human

introns align to mouse introns and, of these, 34.2% are captured in mouse.

Derivation Sliders: Comparison of hESCs to mouse pre and post implantation pluripotent
tissues

Regions with a methylation difference >0.1 between mouse ICM and mouse epiblast were

used to assess the similarity of a sample to mouse ICM vs mouse epiblast. For each sample,

a region scores as mouse ICM if its methylation level is more similar to mouse ICM than

mouse epiblast and vice versa. Regions with methylation values that are equidistant from

mouse ICM and mouse epiblast are excluded. If the slider is viewed as going from 0 (mouse

ICM) to 1 (mouse epiblast), then the position of a sample is simply the proportion of regions

that scored mouse ICM over the total number of regions that contribute a score.

100 bp clustering and feature enrichment

100 bp tiles were clustered using k-means clustering. Clusters were designated as

hypermethylated (>= 0.5) or hypomethylated (<0.5) in sperm according to the cluster center.

A tile and a feature were designated as overlapping if there was an overlap of 1bp or more

between them. Feature enrichment scores are the negative log of the p-value calculated

using the hypergeometric distribution.

Identification of gametic differentially methylated regions in human

Regions that have low methylation in sperm and some methylation in the early embryo

likely represent instances of maternal methylation if the assumption that there is no de novo

methylation over the cleavage divisions is true. A region is considered a maternally

methylated differentially methylated region if: 1) it is significant after a two sample t-test

between sperm and blastocyst with equal variance after correction for multiple hypothesis

testing (q value < 0.05 using the Storey method, Ref. 31) it has a methylation difference

>=0.2 higher in blastocyst than in sperm using sample means, and 3) it has a mean

methylation level >=0.2 for 8 cell. These criteria were applied to both 100 bp tiles and to

CGIs.

Identification of human SNPs

SNPs in human were downloaded from the 1000 genomes project (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/). SNPs that are not trackable by

RRBS (C/T or A/G) and positions that are not covered in an in silico digest of hg19, i.e.

covered by RRBS, were removed. The ratio [reference count/(reference count + alternative

count)] was calculated for each SNP in the single human blastocyst samples and SNPs with

ratios <0.2 or ratios >0.8 were removed since they likely represent homozygous alleles in

the sample. We used the resulting genotypes to facilitate parent-of-origin methylation

tracking.
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Parent-of-origin methylation tracking

Reads were segregated into either the reference or alternative allele, and CpG methylation

levels were called in the same manner described above. SNP normalized methylation values

(Extended Data Fig. 8) are the average of the methylation values derived from each

haplotype.

L1PA Sequence Alignment

All LINE L1HS and L1PA2-7 elements >=5,500 bp were taken from the human genome and

aligned using Muscle with the following parameters: muscle –maxiters 2 –diags.

Methylation levels are from full-length elements that are captured by RRBS. The 132 bp

insert sequences common to elements L1PA3b and older were similarly aligned for

Extended Data Fig. 11c.

Extended Data

Extended Data Figure 1. Isolation of human preimplantation embryos for DNA methylation
mapping
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a. Three replicates of D6 embryos, ranging in inputs from 3 to 5 embryos, were thawed,

screened for proper morphology, independently isolated from the zona pellucida and pooled

prior to RRBS profiling. Embryos are displayed prior to purification.

b. Two replicates of 18 and 19 human D3 cleavage stage embryos were thawed, screened for

proper morphology, assessed for embryonic stage/cell number, and purified from the zona

pellucida prior to RRBS profiling. Embryos are displayed prior to purification.

c. Cell numbers from thawed cleavage stage embryos ranged from 4-11 cells per embryo

with a median of 8 (+/- 1.6 standard deviation) cells. Within each replicate, only 3 embryos

demonstrated onset of compaction at the time of collection. Red line signifies the median,

boxes and whiskers the 25th/75th and 2.5th/97.5th percentiles, respectively.

Extended Data Figure 2. Assembly of a genome wide DNA methylation time series through
human early development and over ESC derivation
a. Summary of RRBS libraries generated, with number of biological replicates (n), number

CpGs captured at 1×, 5×, and 10×, mean/median methylation values for 100 bp tiles

estimated from CpGs covered at ≥5×, and mean Euclidean distance and Pearson correlation

across biological replicates for these tiles.

b. Pearson correlation matrix for sperm, early embryonic, and fetal tissue samples.
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c. Clustering of gametic, somatic, and preimplantation methylation profiles segregate

according to their global DNA methylation landscape, with Sperm/Somatic tissue forming

an adult methylation cluster that contrasts the unique epigenetic landscape present in

preimplantation embryos.

d. Summary of RRBS libraries generated for ESC derivation, with number of biological

replicates (n), number CpGs captured at 1×, 5×, and 10×, mean/median methylation values

for 100 bp tiles estimated from CpGs covered at ≥5×, and mean Euclidean distance and

Pearson correlation across biological replicates for these tiles. hESC ref refers to a reference

collection of previously assayed ESC lines as part of the NIH Roadmap Epigenomics Project

(Methods). Human ICM/TE were isolated through laser-assisted microdissection.

e. Pearson correlation matrix for human samples used to model ESC derivation. A consistent

signature is rapidly acquired by the outgrowth stage (p0) and stably maintained over

additional passages.

f. Methylation histograms for 100 bp tiles for human blastocysts and dissected ICM/TE

tissue show minimal global difference, which is also observed when comparing previously

assayed, immunosurgically purified mouse ICM to mechanically dissected ICM and TE.

g. Boxplots of the change in methylation (Δ methylation) for 100 bp tiles from cleavage to

the blastocyst stage show passive demethylation of DNA methylation, particularly for

regions that exhibit the highest methylation levels at this stage. Red line signifies the

median, boxes and whiskers the 25th/75th and 2.5th/97.5th percentiles, respectively.

Extended Data Figure 3. Characterization of ESC derivation to in vivo pluripotent tissues in
mouse
a. Global methylation histograms of 100 bp tiles for human ICM and p5 ESCs (rows)

compared against mouse preimplantation and postimplantation embryos (ICM, E6.5 Epi), as

well as with extraembryonic ectoderm (ExE) (columns), demonstrate the rapid acquisition of

an epiblast-like, somatic methylation pattern upon ESC derivation in human.

b. Regions that discriminate mouse ICM from E6.5 epiblast were used to assign human ICM

and ESCs to an equivalent in vivo pluripotent state for orthologous features. The position
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along the axis from preimplantation (ICM) to postimplantation (Epi) pluripotency represents

the proportion of regions in a set that resemble one state versus the other. For all feature sets,

human ESCs rapidly establish an epiblast identity, maintaining this signature from the

outgrowth stage over ensuing passages. hESC Ref refers to a reference collection of

previously assayed ESC lines as part of the NIH Roadmap Epigenomics Project (Methods).

Extended Data Figure 4. Inverse correlation between expression and promoter methylation is
retained during human preimplantation
a. Scatterplots of oocyte, preimplantation embryo and ESC derivation gene expression

compared to promoter methylation display a canonical negative correlation, even during

preimplantation where the range of promoter methylation values is contracted by global

hypomethylation.

b. Box plots of gene expression values for genes significantly upregulated by ≥ 2 fold from

oocyte to 8 cell compared to non-dynamic genes and categorized by promoter methylation

dynamics. Genes that are both demethylated and upregulated are associated with induction

from a silenced state, while those that are demethylated but not upregulated display only

basal level transcription that is significantly lower than observed in promoters that are not

demethylated. Bold line signifies the median, boxes and whiskers the 25th/75th and 2.5th/

97.5th percentiles, respectively.
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c. Gene expression dynamics following fertilization for hypermethylated sperm promoters

demethylated ≥0.5 by the cleavage stage compared to the rest of promoters (Other). 123 of

541 (22%) demethylated promoters demonstrate significant upregulation (≥2-fold)

compared to only 13.6% of other promoters. Moreover, the ratio of upregulated to

downregulated genes in the demethylated set substantially favors zygotic activation, while

other promoters include more downregulated maternal transcripts (Odds Ratio = 1.877, p =

1.344 × 10−8, hypergeometric test).

d. RNA-seq track of the pluripotency promoting, zygotically induced gene POU5F1, whose

promoter is demethylated from 0.59 in sperm to 0.02 in cleavage, concurrent with its

transcriptional induction.

Extended Data Figure 5. Local retention of DNA methylation is similar for introns over human
and mouse preimplantation
a. Introns are clustered according to their dynamics in human and the methylation of

orthologous regions are tracked in mouse. Divergence is predominantly restricted to

intermediately methylated features in human sperm that are generally hypermethylated in

mouse. Δ methylation heatmap displays the difference in methylation values between

equivalent preimplantation timepoints, with ESCs in human serving as a proxy for

comparison to the E6.5 epiblast in mouse. Deviation is most apparent for intermediately
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methylated human sperm introns, where they are less methylated than in mouse. RMSK

included: repeat masker annotated regions included.

b. When repetitive elements are removed from the calculation of intron methylation, the

apparent divergence between mouse and human values is lost. Methylation and Δ

methylation heatmaps are as in a. Gray denotes missing values (m.v.) where estimates for

intronic methylation were exclusively derived from repetitive elements. RMSK-free: repeat

masker annotated regions excluded.

c. Violin plots of the two main dynamics (maintained vs demethylated) for sperm

hypermethylated introns over human and mouse preimplantation after repetitive elements

are removed. As observed for orthologous exons, regions that retain high methylation

throughout human preimplantation are conserved, hypermethylated in both mouse gametes,

and display maintained regulation as early as the zygote stage.

Extended Data Figure 6. Genomic characterization of transient maternally contributed imprint-
like regions
a. Heatmap of 100 bp tiles in mouse preimplantation identified using the same criteria as

applied to human (Methods). This criteria, which assumes limited de novo methylation,

identifies 2,044 tiles in mouse where methylation is ≥ 0.2 in both 8 cell and the ICM, there is

≥0.2 methylation difference between the ICM and sperm, and this difference is significant

via t test, (q-value < 0.05). 89% of those tiles that are captured in the mouse oocyte are
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monoallelically inherited and show significant differences between the gametes by t-test,

providing an empirical upper bound on the False Discovery Rate for this strategy when

applied to human of ≤ 0.11, assuming the underlying principles of imprint regulation are the

same as in mouse.

b. The proportion of 100 bp tiles, classified according to their resolution in ESCs, for each

genomic feature presented in Figure 3a.

c. Cumulative density function (CDF) plot of the distance to the nearest annotated TSS for

CGI DMRs that resolve to hypomethylation, intermediate/variable methylation, or

hypermethylation. There is a discrepancy in genomic location between those that resolve to

hypomethylation, of which a sizable fraction are in the TSS, and those that do not, which are

generally enriched further downstream.

d. Boxplots of CpG density for CGI DMRs that resolve to hypomethylation, intermediate/

variable methylation, or hypermethylation paired with comparable non-DMR CGIs

(Somatic). Those resolving to hypomethylation have higher CpG densities than those that

resolve to intermediate/variable or hypermethylation, but have slightly lower CpG density

than non-DMR, constitutively hypomethylated CGIs. Alternatively, while CGIs that resolve

to hypermethylation show a lower CpG density than other DMRs, they show higher density

than non-DMR hypermethylated islands, suggesting some level of protection against

deamination as an attribute of their uniquely hypomethylated status in the male germline.

e. Pie charts of cross species alignment and CGI status of human CGI DMRs into mouse.

Those that resolve to hypomethylation are more often conserved in mouse and more

frequently retain their CGI status, whereas those resolving to hypermethylation are less

conserved. Moreover, intermediate/variable and hypermethylation-resolving regions that do

align are less frequently retained as CGIs suggesting that hypomethylation specific to the

male germline is insufficient to protect these regions from progressive deamination over

time. 368, 166, and 260 CGIs comprise the hypo, intermediate/variable, and hyper

methylation sets, respectively,
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Extended Data Figure 7. Generation of single blastocyst libraries confirm the monoallelic
behavior of putative maternal DMRs
a. Summary of two single blastocyst RRBS libraries. Number of CpGs captured at 1×, 5×,

and 10×, mean/median methylation values for 100 bp tiles estimated from CpGs covered at

≥5×, and mean Euclidean distance and Pearson correlation when single blastocyst replicates

are compared to the pooled blastocyst timepoint.

b. Histograms of DNA methylation for 100 bp regions captured for each single blastocyst

replicate.

c. The ratio of reference allele to alternative allele for single nucleotide polymorphisms

(SNPs) called as heterozygous in each blastocyst replicate.

d. For the 4,492 and 5,118 SNPs that were considered as heterozygous within each single

blastocyst, 10,068 and 11,415 single CpGs could be assigned to alleles. Scatterplots depict

untracked methylation values for these CpGs against their normalized methylation values,

which are the average of their monoallelic methylation states.
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Extended Data Figure 8. The somatic promoter of DNMT1 is maternally methylated in human
and mouse
a. Plots of single CpG methylation for DNMT1, including a CGI over the somatic promoter

that behaves as a transient, preimplantation-specific DMR in both human and mouse. In

mouse, hypermethylation of this island corresponds to its transcriptional readthrough and

exclusion as part of an oocyte-specific isoform (Dnmt1-o) that is not annotated in human.

Annotated CGIs and species conservation tracks are included for reference below.

b. Heatmap of orthologous ICR dynamics over human and mouse preimplantation. Of those

that map between species and are captured by RRBS, all but one (PEG10) behave

identically.
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Extended Data Figure 9. Repetitive element regulation during human and mouse
preimplantation
a. Violin plots for LTRs over human and mouse development. In human, LTRs demonstrate

a bimodal distribution in sperm. Hypermethylated LTRs display a range of demethylation in

the early embryo that reflects the dynamics of subfamilies. Upon ESC derivation, and within

fetal tissues, LTRs become stably hypermethylated. Alternatively, during mouse

preimplantation, LTRs are consistently hypermethylated in sperm and generally retain

methylation over preimplantation. E6.5 Epi and E6.5 ExE refer to dissected epiblast and

extraembryonic tissue from E6.5 embryos.

b. Violin plots for LINEs over human and mouse development. In human sperm, LINEs are

unstably hypermethylated, with discrete populations methylated with a mean of ∼0.75, ≥0.9,

and a small subpopulation showing gametic escape from high methylation. Alternatively,

LINEs are indiscriminately hypermethylated in mouse sperm. In both species, several

populations of elements demonstrate different extents of demethylation during

preimplantation, including many that retain higher levels in cleavage and only minor,

passive depletion into blastocyst. Upon human ESC derivation or during mouse

implantation, elements are generally remethylated, though only partially for those elements

that are demethylated after fertilization. Hypermethylation is complete in fetal tissue. In

human, these discrete dynamics can be attributed to to the unstable methylation for L1HS-
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L1PA3a subfamilies while, in mouse, the currently active L1Md_Tf and L1Md_Gf

subfamilies are similarly demethylated and elements of the independently emerging

L1Md_A lineage remain methylated.

c. Violin plots for SINEs highlight intermediate methylation in sperm in both species,

though more so for humans. After fertilization, SINE methylation rapidly diminishes to near

complete hypomethylation over preimplantation, similar to what is observed for intergenic

sequence, before complete hypermethylation during ESC derivation in human or in

postimplantation mouse E6.5 embryos. Taken globally, SINEs appear to be uniformly

regulated regardless of subfamily, though differences in regulatory status for specific SINE

elements may be reflected by their surrounding genomic context. Unfortunately, such

inferences require higher genomic resolution than is currently available to distinguish the

dynamics of specific integrations.

d-g. Violin plots of the four major LTR families present in mouse over the complete

preimplantation timeline. ERV1 elements (d) are hypermethylated in sperm and display a

range of demethylation following fertilization and prompt remethylation upon implantation.

In mouse, ERVK elements (e) are emergent and largely consist of the dominating,

constitutively hypermethylated IAP subfamilies. ERVL and MalR (ERVL-MalR) elements

(f and g), the evolutionarily oldest mammalian LTRs, are hypermethylated in sperm and

rapidly demethylated after fertilization frequently in association with their rapid zygotic

induction.

h. Distribution (as boxplots) of per element expression and CpG density at different

methylation levels for LTR12c demonstrates negative correlation between methylation and

expression. On average, LTR12C is hypomethylated in sperm and the early embryo, but

demonstrates a consistent range of values at the level of single elements, with least

methylated elments contributing the most to LTR12c expression. The CpG density of these

elements corresponds to their degree of hypomethylation, suggesting that escape from de

novo methylation during spermatogenesis and preimplantation is maintained for specific

elements over generations. Once targeted, element expression is apparently restricted and its

CpG density decays correspondingly. During ESC derivation, the kinetics of LTR12c

methylation is more rapid for those of lower CpG density, as evident from p0 to p5 in the

ESC lines. DNA methylation in the early embryo is therefore not exclusive to the regulation

of different ERV1 subfamilies, but also affects the contribution of single elements to the

broader transcriptional pattern. Bold line signifies the median, boxes and whiskers the

25th/75th and 2.5th/97.5th percentiles, respectively. Expression is calculated as the number of

fragments per million that align to a given element divided by its length in kb (FPKM).
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Extended Data Figure 10. L1PA subfamily dynamics during human early development
a. Expression composite averaged by genomic representation for L1HS through L1PA7

from oocyte through preimplantation and ESC derivation. Dynamic expression within the

L1PA phylogeny is restricted to the same subfamilies that are demethylated by cleavage.

The position of each respective 5′ UTR, the functional promoter for LINEs, is highlighted in

the legend. Beneath these composites is the genomic representation to the full length

consensus for each annotated L1PA subfamily, which demonstrates relative equivalence of

5′ UTR representation across different subfamilies, but an increasing proportion of truncated

3′ fragments with subfamily age (Methods).

b. The frequency of CpGs within aligned L1PA subfamilies, including 5′ UTR, Orf1/2, and

3′ UTR. CpGs are primarily enriched within the 5′UTR/promoter and become progressively

CpG depleted with element age.

c. Complete composite plot of cleavage stage methylation values across aligned 5′ UTRs

from L1HS through L1PA7 as in Figure 6d. The multiple sequence alignment for each

subfamily to the assembled consensus is visualized below each composite, with blue

corresponding to conservation, black to divergence, and white to gaps or deletions. The x-

axis represents position along the 5′ UTR and a portion of ORF1 for the L1HS consensus.

CpG Frequency describes the level of conservation for individual CpGs found within single

elements to the consensus. The ∼130 bp sequence present from L1PA7 to L1PA3b and

absent from L1PA3a to L1HS is highlighted in pink, while two older sequences specific to

L1PA7 are highlighted in gray.
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d. Percent identity to the consensus for the extracted ∼130 bp insert sequence in elements

from L1PA7 through L1PA3b. Mean nucleotide identity to the consensus is 85%, with a

median of 89%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Human preimplantation embryos are globally hypomethylated
a. Top. DNA methylation across 100 bp tiles for human sperm, preimplantation embryos,

including the ICM and TE, ESC derivation from outgrowth to 5th passage, and somatic fetal

tissues representing all germ layers. Gray highlights the average. Bottom. Boxplots of

methylationat different local CpG densities. Bulls-eye signifies the median, boxes and lines

the 25th/75th and 2.5th/97.5th percentiles, respectively.

b. Bar plots of 100 bp tiles segregated by non-repetitive (unique) or repetitive designation

and binned by methylation status. Sp, sperm; Cl, cleavage; Bl, blastocyst;Som, somatic.

“ESC” and “Som” refer to the average of these timepoints.

c. Non-repetitive 100 bp tiles are clustered via k-means into 10 dynamics. Sperm

hypermethylated sequences follow three general trajectories: persistent maintenance,

incomplete or complete demethylation. Other dynamics include sperm specific

hypermethylation and sperm/early embryonic hypomethylation that is de novo methylated in

ESCs. Finally, 3,586 tiles are hypomethylated in sperm and ESCs but methylated in

embryos, representing transient imprint-like signatures.

d. Dynamics for sperm hypermethylated, non-repetitive tiles as clustered in (c). Left

heatmap, per cluster average of tiles. Right heatmap, –log10 p value of hypergeometric

enrichment for each cluster for intergenic, exonic, intronic, CGI, or TSS annotations using

sperm hypermethylated regions as the background.

e. Violin plot forsperm hypermethylated intergenic (inter), exonic, and intronic features.
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f. The OBSCN gene exhibits high inter- and intra-genic methylation and an unmethylated

promoter in sperm and ESCs. In cleavage embryos, a 130 kb region, highlighted in blue,

remains specifically methylated while the periphery is demethylated.
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Figure 2. Human preimplantation dynamics are globally similar to mouse
a. Histograms of methylation changes (Δ methylation) for 100 bp tiles across human and

mouse preimplantation from fertilization (Sp to Cl) through preimplantation (Cl to Bl) to

global remethylation at implantation, as measured from blastocyst to ESC in human and

ICM to E6.5 epiblast in mouse (Bl to ESC/Epi).

b. Exons clustered by dynamics in human with equivalent methylation values for

orthologous sequences in mouse. Δ methylation heatmap displays the difference in

methylation for matched timepoints.

c. Violin plots of orthologous human sperm hypermethylated exons classified as maintained

vs demethylated and measured over human and mouse preimplantation.
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Figure 3. Transient maternal DMRs target a divergent set of CpG island promoters
a. Heatmap of 5,265 100 bp tiles consistent with maternally contributed monoallelic

methylation (Methods). Tiles are partitioned according to their hypo (≤0.2), intermediate/

variable (0.2<x<0.8) or hypermethylated (≥0.8) resolution in ESCs. Feature annotations are

included as separate heatmaps.

b. Boxplots of CGI DMR methylation for two independent single blastocysts, with

heterozygous SNP-linked CpGs highlighted. Within each replicate, 31 and 33 CGI DMRs

contain CpGs that could be assigned to parental loci. In each case, DNA methylation is

restricted to only one of the two alleles. Untracked refers to the inferred methylation status

prior to haplotype segregation. Red line signifies the median, boxes and whiskers the 25th/

75th and 2.5th/97.5th percentiles.

c. Single CpG track of a conserved preimplantation-specific DMR in human and mouse.

Human blastocyst data includes information from the pooled sample as well as for a single

blastocyst replicate (purple) with allele-tracked methylation for 10 CpGs highlighted in pink

and blue. Annotated CGIs are included below.

d. Resolution of CGIs that behave as maternal DMRs in human and mouse.

e. Heatmap of orthologous ICRs over human and mouse preimplantation development.
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f. Orthologous hypomethylation-resolving CGID MRs in human and mouse share only 13

equivalently regulated regions. When methylation values of mouse or human specific DMRs

are tracked in the alternate species, they are constitutively hypomethylated, indicating that

oogenesis targets equivalent genomic features but at species-specific sequences. PreImp

refers to the average value for cleavage and blastocyst in human or 8 cell and ICM in mouse.
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Figure 4. LTR subfamily dynamics are divided into early and late preimplantation phases
a. Violin plots forthe four LTR families present in human over early development and ESC

derivation.

b. Pie charts of LTR family expression calculated as the number of fragments per million

(FPM) that align to elements with in the family.

c. Mean methylation of notable ERV1, ERVK, and MalR subfamilies. Three ERV1

subfamilies are included to represent discrete dynamics: gamete/early embryonic

hypomethylation (LTR12c), constitutive methylation (HERV9-INT) and rapid

demethylation (LTR7). The ERVK subfamily LTR5Hs is also demethylated.

d. Expression dynamics for the same subfamilies in (c). LTR12c is expressed early and

downregulated in the blastocyst. Alternatively, LTR7 is expressed throughout, but

upregulated in the blastocyst and maintained in hESCs, where it accounts for the majority of

ERV1 transcripts. Like LTR7, LTR5Hs is only intermediately methylated during ESC

derivation and is embryonically induced. Alternatively, the ERV1 HERV9-INT remains

repressed. MLT1H2 is the prevailing MalR transcribed in the oocyte and is lost after

fertilization. Expression is the fragments per million that align to subfamily elements,

divided by the kb annotated as the subfamily in the genome (FPKM).
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Figure 5. Emergent L1PA subfamilies escape DNA methylation-based repression during
preimplantation
a. Pie charts of the LINE expression divided into the L1PA subfamily, other LINE1 and

LINE2 subfamilies. Total expression is calculated as the number of fragments per million

(FPM) that align to family elements.

b. Mean methylation values for the most recent L1PA subfamilies. In cleavage embryos,

L1HS through L1PA3 are demethylated and maintain these levels through the blastocyst.

c. Expression dynamics for the same subfamilies in (c) over preimplantation and in ESCs.

The three youngest L1PA subfamilies are induced by the 8cell stage. Expression is the

number of fragments per million that align to subfamily elements, divided the kb annotated

as the subfamily in the genome (FPKM).

d. Composite plot of cleavage stage methylation values across aligned 5′ UTRs in L1PA

subfamilies. The composite for L1PA3 is split by the presence (red) or absence (blue) of a

∼130 bp sequence that distinguishes L1PA3b from L1PA3a and demarcates methylation

values between older and newer subfamilies (highlighted in pink). Multiple sequence

alignment for each subfamily to the assembled consensus is below each composite, with

blue corresponding to conservation, black to divergence, and white to gaps or deletions. The

x-axis represents position along the L1HS 5′ UTR and a portion of ORF1. CpG Frequency

describes per CpG conservation within single elements to the consensus. Two older

sequences specific to L1PA7 are highlighted in gray.
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e. Boxplot of L1PAmethylation in cleavage embryos, sorted by the presence of the ∼130 bp

sequence for all elements and L1PA3 specifically. Preimplantation methylation is higher for

elements that contain this insert. Bold line signifies the median, boxes and whiskers the

25th/75th and 2.5th/97.5th percentiles.

f. Expression composite of full-length insert deleted L1PA3a and insert containing L1PA3b

subfamilies in oocyte, 8 cell and blastocyst stage embryos. Transcriptional induction is not

apparent until after fertilization and is specific to L1PA3a. Read count is the read coverage

normalized by total reads (Methods).
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