865 research outputs found

    Slabs of stabilized jellium: Quantum-size and self-compression effects

    Get PDF
    We examine thin films of two simple metals (aluminum and lithium) in the stabilized jellium model, a modification of the regular jellium model in which a constant potential is added inside the metal to stabilize the system for a given background density. We investigate quantum-size effects on the surface energy and the work function. For a given film thickness we also evaluate the density yielding energy stability, which is found to be slightly higher than the equilibrium density of the bulk system and to approach this value in the limit of thick slabs. A comparison of our self-consistent calculations with the predictions of the liquid-drop model shows the validity of this model.Comment: 7 pages, 6 figures, to appear in Phys. Rev.

    Concentration Gradient, Diffusion, and Flow Through Open Porous Medium Near Percolation Threshold via Computer Simulations

    Get PDF
    The interacting lattice gas model is used to simulate fluid flow through an open percolating porous medium with the fluid entering at the source-end and leaving from the opposite end. The shape of the steady-state concentration profile and therefore the gradient field depends on the is found to scale with the porosity according to porosity p. The root mean square (rms) displacements of fluid and its constituents (tracers) show a drift power-law behavior, in the asymptotic regime. The flux current density is found to scale with the porosity according to an exponent near 1.7.Comment: 8 figure

    Lattice Dynamics and the High Pressure Equation of State of Au

    Full text link
    Elastic constants and zone-boundary phonon frequencies of gold are calculated by total energy electronic structure methods to twofold compression. A generalized force constant model is used to interpolate throughout the Brillouin zone and evaluate moments of the phonon distribution. The moments are used to calculate the volume dependence of the Gruneisen parameter in the fcc solid. Using these results with ultrasonic and shock data, we formulate the complete free energy for solid Au. This free energy is given as a set of closed form expressions, which are valid to compressions of at least V/V_0 = 0.65 and temperatures up to melting. Beyond this density, the Hugoniot enters the solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are discussed within an approximate model. We compare with proposed standards for the equation of state to pressures of ~200 GPa. Our result for the room temperature isotherm is in very good agreement with an earlier standard of Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.

    Graphene for spintronics: giant Rashba splitting due to hybridization with Au

    Full text link
    Graphene in spintronics has so far primarily meant spin current leads of high performance because the intrinsic spin-orbit coupling of its pi-electrons is very weak. If a large spin-orbit coupling could be created by a proximity effect, the material could also form active elements of a spintronic device such as the Das-Datta spin field-effect transistor, however, metal interfaces often compromise the band dispersion of massless Dirac fermions. Our measurements show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d states as the source for the giant spin-orbit splitting. An ab initio model of the system shows a Rashba-split dispersion with the analytically predicted gapless band topology around the Dirac point of graphene and indicates that a sharp graphene-Au interface at equilibrium distance will account for only ~10 meV spin-orbit splitting. The ab initio calculations suggest an enhancement due to Au atoms that get closer to the graphene and do not violate the sublattice symmetry.Comment: 16 pages (3 figures) + supplementary information 16 pages (14 figures

    Block-Diagonalization and f-electron Effects in Tight-Binding Theory

    Full text link
    We extend a tight-binding total energy method to include f-electrons, and apply it to the study of the structural and elastic properties of a range of elements from Be to U. We find that the tight-binding parameters are as accurate and transferable for f-electron systems as they are for d-electron systems. In both cases we have found it essential to take great care in constraining the fitting procedure by using a block-diagonalization procedure, which we describe in detail.Comment: 9 pages, 6 figure

    Sodium atoms and clusters on graphite: a density functional study

    Full text link
    Sodium atoms and clusters (N<5) on graphite (0001) are studied using density functional theory, pseudopotentials and periodic boundary conditions. A single Na atom is observed to bind at a hollow site 2.45 A above the surface with an adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates a flat potential energy surface. Increased Na coverage results in a weak adsorbate-substrate interaction, which is evident in the larger separation from the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The binding is weak for Na_2, which has a full valence electron shell. The presence of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and both Na_4 and Na_5 are distorted from planarity. The calculated formation energies suggest that clustering of atoms is energetically favorable, and that the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure

    Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu

    Get PDF
    We have theoretically studied the stability and reconstruction of (111) surfaces of Au, Pt, and Cu. We have calculated the surface energy, surface stress, interatomic force constants, and other relevant quantities by ab initio electronic structure calculations using the density functional theory (DFT), in a slab geometry with periodic boundary conditions. We have estimated the stability towards a quasi-one-dimensional reconstruction by using the calculated quantities as parameters in a one-dimensional Frenkel-Kontorova model. On all surfaces we have found an intrinsic tensile stress. This stress is large enough on Au and Pt surfaces to lead to a reconstruction in which a denser surface layer is formed, in agreement with experiment. The experimentally observed differences between the dense reconstruction pattern on Au(111) and a sparse structure of stripes on Pt(111) are attributed to the details of the interaction potential between the first layer of atoms and the substrate.Comment: 8 pages, 3 figures, submitted to Physical Review
    corecore