256 research outputs found

    The SECURE project – Stem canker of oilseed rape: : molecular methods and mathematical modelling to deploy durable resistance

    Get PDF
    N Evans et al, "The SECURE Project - Stem Canker of oilseed rape: Molecular methods and mathematical modeling to deploy durable resistance", in Vol 4 of the Proceedings of the 12th International Rapeseed Congress : Sustainable Development in Cruciferous Oilseed Crops Production, Wuhan, China, March 26 - 30, 2007. The proceedings are available online at: http://gcirc.org/intranet/irc-proceedings/12th-irc-wuhan-china-2007-vol-4.htmlModelling done during the SECURE project has demonstrated the dynamic nature of the interaction between phoma stem canker (Leptosphaeria maculans), the oilseed rape host (Brassica napus) and the environment. Experiments done with near-isogenic lines of L. maculans to investigate pathogen fitness support field data that suggest a positive effect of the avirulence allele AvrLm4 on pathogen fitness, and that the loss of this allele renders isolates less competitive under field conditions on cultivars without the resistance gene Rlm4. The highlight of molecular work was the cloning of AvrLm1 and AvrLm6. L. maculans is now one of the few fungal species for which two avirulence loci have been cloned. Subsequent research focused on understanding the function of AvrLm1 and AvrLm6 and on the analysis of sequences of virulent isolates to understand molecular evolution towards virulence. Isolates of L. maculans transformed with GFP and/or DsRed were used to follow growth of the fungus in B. napus near-isogenic-lines (NIL) with or without MX (Rlm6) resistance under different temperature and wetness conditions. The results greatly enhanced our knowledge of the infection process and the rate and extent of in planta growth on different cultivars. Conclusions from work to model durability of resistance have been tested under field conditions through a series of experiments to compare durability of resistance conferred by the major resistance gene Rlm6 alone in a susceptible background (EurolMX) or in a resistant background (DarmorMX) under recurrent selection over 4 growing seasons. A major priority of the project was knowledge transfer of results and recommendations to target audiences such as plant breeding companies and extension services. CETIOM developed a “diversification scheme” that encourages French growers to make an informed choice about the cultivars that are grown within the rotation based on the resistance genes carried by the individual cultivars. Use of such schemes, in association with survey data on the population structure of L. maculans at both national and European scales will provide opportunities for breeders and the industry to manage available B. napus resistance more effectively.Non peer reviewe

    FONZIE: An optimized pipeline for minisatellite marker discovery and primer design from large sequence data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Micro-and minisatellites are among the most powerful genetic markers known to date. They have been used as tools for a large number of applications ranging from gene mapping to phylogenetic studies and isolate typing. However, identifying micro-and minisatellite markers on large sequence data sets is often a laborious process.</p> <p>Results</p> <p>FONZIE was designed to successively 1) perform a search for markers via the external software Tandem Repeat Finder, 2) exclude user-defined specific genomic regions, 3) screen for the size and the percent matches of each relevant marker found by Tandem Repeat Finder, 4) evaluate marker specificity (i.e., occurrence of the marker as a single copy in the genome) using BLAST2.0, 5) design minisatellite primer pairs via the external software Primer3, and 6) check the specificity of each final PCR product by BLAST. A final file returns to users all the results required to amplify markers. A biological validation of the approach was performed using the whole genome sequence of the phytopathogenic fungus <it>Leptosphaeria maculans</it>, showing that more than 90% of the minisatellite primer pairs generated by the pipeline amplified a PCR product, 44.8% of which showed agarose-gel resolvable polymorphism between isolates. Segregation analyses confirmed that the polymorphic minisatellites corresponded to single-locus markers.</p> <p>Conclusion</p> <p>FONZIE is a stand-alone and user-friendly application developed to minimize tedious manual operations, reduce errors, and speed up the search for efficient minisatellite and microsatellite markers departing from whole-genome sequence data. This pipeline facilitates the integration of data and provides a set of specific primer sequences for PCR amplification of single-locus markers. FONZIE is freely downloadable at: <url>http://www.versailles-grignon.inra.fr/bioger/equipes/leptosphaeria_maculans/outils_d_analyses/fonzie</url></p

    Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’

    Get PDF
    This document is the Accepted Manuscript version of the following article: Ze Liu, Akinwunmi O. Latunde-Dada, Avice M. Hall, Bruce D. L. Fitt, ‘Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’’, European Journal of Plant Pathology, Vol. 140(4): 841-857, December 2014. The final publication is available at Springer via: http://dx.doi.org/10.1007/s10658-014-0513-7 © Koninklijke Nederlandse Planteziektenkundige Vereniging 2014Phoma stem canker of oilseed rape (Brassica napus) is a globally important disease that is caused by the sibling ascomycete species Leptosphaeria maculans and L. biglobosa. Sixty fungal isolates obtained from oilseed rape stems with phoma stem canker disease symptoms collected from four provinces in China in 1999, 2005 and 2006 were all identified as Leptosphaeria biglobosa, not L. maculans, by PCR diagnostics based on species-specific primers. There were no differences in cultural characteristics (e.g. pigmentation and in vitro growth) between these L. biglobosa isolates from China and those of 37 proven L. biglobosa isolates from Europe or Canada. In studies using amplified fragment length polymorphism (AFLP) markers, Chinese L. biglobosa populations were genetically more similar to European L. biglobosa populations than to the more diverse Canadian L. biglobosa populations. Sequencing of gene fragments of ÎČ-tubulin, actin and the internal transcribed spacer (ITS) region of rDNA from L. biglobosa isolates from China, Europe, Australia and Canada showed a closer taxonomic similarity of Chinese L. biglobosa to the European L. biglobosa ‘brassicae’ than to Canadian L. biglobosa ‘canadensis’ or to the Australian L. biglobosa ‘occiaustralensis’ or ‘australensis’ subclades. These results suggest that the Chinese L. biglobosa population in this study is in the same subclade as European L. biglobosa ‘brassicae’ populationsPeer reviewe

    Fine root dynamics across pantropical rainforest ecosystems

    Get PDF
    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than above-ground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n=47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.Output Status: Forthcoming/Available Online Additional co-authors: Christopher E. Doughty, Imma Oliveras, Darcy F. Galiano Cabrera, Liliana Durand Baca, Filio FarfĂĄn AmĂ©zquita, Javier E. Silva Espejo, Antonio C.L. da Costa, Erick Oblitas Mendoza, Carlos Alberto Quesada, Fidele Evouna Ondo, JosuĂ© Edzang Ndong, Vianet Mihindou, Natacha N’ssi Bengone, Forzia Ibrahim, Shalom D. Addo-Danso, Akwasi Duah-Gyamfi, Gloria Djaney Djagbletey, Kennedy Owusu-Afriyie, Lucy Amissah, Armel T. Mbou, Toby R. Marthews, Daniel B. Metcalfe, Luiz E.O. AragĂŁo, Ben H. Marimon-Junior, Beatriz S. Marimon, Noreen Majalap, Stephen Adu-Bredu, Miles Silman, Robert M. Ewers, Patrick Meir, Yadvinder Malh

    Carbon inputs from Miscanthus displace older soil organic carbon without inducing priming

    Get PDF
    The carbon (C) dynamics of a bioenergy system are key to correctly defining its viability as a sustainable alternative to conventional fossil fuel energy sources. Recent studies have quantified the greenhouse gas mitigation potential of these bioenergy crops, often concluding that C sequestration in soils plays a primary role in offsetting emissions through energy generation. Miscanthus is a particularly promising bioenergy crop and research has shown that soil C stocks can increase by more than 2 t C ha−1 yr−1. In this study, we use a stable isotope (13C) technique to trace the inputs and outputs from soils below a commercial Miscanthus plantation in Lincolnshire, UK, over the first 7 years of growth after conversion from a conventional arable crop. Results suggest that an unchanging total topsoil (0–30 cm) C stock is caused by Miscanthus additions displacing older soil organic matter. Further, using a comparison between bare soil plots (no new Miscanthus inputs) and undisturbed Miscanthus controls, soil respiration was seen to be unaffected through priming by fresh inputs or rhizosphere. The temperature sensitivity of old soil C was also seen to be very similar with and without the presence of live root biomass. Total soil respiration from control plots was dominated by Miscanthus-derived emissions with autotrophic respiration alone accounting for ∌50 % of CO2. Although total soil C stocks did not change significantly over time, the Miscanthus-derived soil C accumulated at a rate of 860 kg C ha−1 yr−1 over the top 30 cm. Ultimately, the results from this study indicate that soil C stocks below Miscanthus plantations do not necessarily increase during the first 7 years

    A review of source tracking techniques for fine sediment within a catchment

    Get PDF
    Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments

    A review of source tracking techniques for fine sediment within a catchment

    Get PDF
    Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments
    • 

    corecore