502 research outputs found
Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid
The mapping of electrostatic potentials and magnetic fields in liquids usingelectron holography has been considered to be unrealistic. Here, we showthat hydrated cells ofMagnetospirillum magneticumstrain AMB-1 and assem-blies of magnetic nanoparticles can be studied using off-axis electronholography in a fluid cell specimen holder within the transmission electronmicroscope. Considering that the holographic object and reference waveboth pass through liquid, the recorded electron holograms show sufficientinterference fringe contrast to permit reconstruction of the phase shift ofthe electron wave and mapping of the magnetic induction from bacterialmagnetite nanocrystals. We assess the challenges of performingin situmagne-tization reversal experiments using a fluid cell specimen holder, discussapproaches for improving spatial resolution and specimen stability, and outlinefuture perspectives for studying scientific phenomena, ranging from interpar-ticle interactions in liquids and electrical double layers at solid–liquidinterfaces to biomineralization and the mapping of electrostatic potentialsassociated with protein aggregation and folding
Guest Editorial Special Issue on Medical Imaging and Image Computing in Computational Physiology
International audienceThe January 2013 Special Issue of IEEE transactions on medical imaging discusses papers on medical imaging and image computing in computational physiology. Aslanid and co-researchers present an experimental technique based on stained micro computed tomography (CT) images to construct very detailed atrial models of the canine heart. The paper by Sebastian proposes a model of the cardiac conduction system (CCS) based on structural information derived from stained calf tissue. Ho, Mithraratne and Hunter present a numerical simulation of detailed cerebral venous flow. The third category of papers deals with computational methods for simulating medical imagery and incorporate knowledge of imaging physics and physiology/biophysics. The work by Morales showed how the combination of device modeling and virtual deployment, in addition to patient-specific image-based anatomical modeling, can help to carry out patient-specific treatment plans and assess alternative therapeutic strategies
Thermopower in the strongly overdoped region of single-layer Bi2Sr2CuO6+d superconductor
The evolution of the thermoelectric power S(T) with doping, p, of
single-layer Bi2Sr2CuO6+d ceramics in the strongly overdoped region is studied
in detail. Analysis in term of drag and diffusion contributions indicates a
departure of the diffusion from the T-linear metallic behavior. This effect is
increased in the strongly overdoped range (p~0.2-0.28) and should reflect the
proximity of some topological change.Comment: 4 pages, 4 figure
Anomalous electronic susceptibility in Bi2Sr2CuO6+d and comparison with other overdoped cuprates
We report magnetic susceptibility performed on overdoped Bi2Sr2CuO6+d powders
as a function of oxygen doping d and temperature T. The decrease of the spin
susceptibility with increasing T is confirmed. At sufficient high temperature,
the spin susceptibility Chi_s presents an unusual linear temperature dependence
Chi_s ~ Chi_s0 -Chi_1 T. Moreover, a linear correlation between Chi_1 and
Chi_s0 for increasing hole concentration is displayed. A temperature Tchi,
independent of hole doping characterizes this scaling. Comparison with other
cuprates of the literature(LSCO, Tl-2201 and Bi-2212), over the same overdoped
range, shows similarities with above results. These non conventional metal
features will be discussed in terms of a singular narrow-band structure.Comment: 16 pages, 4 figure
Results of the French Evalda-Media evaluation campaign for literal understanding
International audienceThe aim of the MEDIA-EVALDA project is to evaluate the understanding capabilities of dialog systems. This paper presents the MEDIA protocol for speech understanding evaluation and describes the results of the June 2005 literal evaluation campaign. Five systems, both symbolic or corpus-based participated to the evaluation which is based on a common semantic representation. Different scorings have been performed on the system results. The understanding error rate, for the Full scoring is, depending on the systems, from 29% to 41.3%. A diagnosis analysis of these results is proposed
Efficient depth estimation using trinocular stereo
Journal ArticleWe present recent advancements in our passive trinocular stereo system. These include a technique for calibrating and rectifying in a very efficient and simple manner the triplets of images taken for trinocular stereovision systems. After the rectification of images, epipolar lines are parallel to the axes of the image coordinate frames. Therefore, potential matches between the three images satisfy simpler relations, allowing for a less complicated and more efficient matching algorithm. We also describe a more robust and general control strategy now employed in our trinocular stereo system. We have also developed an innovative method for the reconstruction of 3-D segments which provides better results and a new validation technique based on the observation that neighbors in the image should be neighbors in space. Experiments are presented demonstrating these advancements
Optical properties of an effective one-band Hubbard model for the cuprates
We study the Cu and O spectral density of states and the optical conductivity
of CuO_2 planes using an effective generalized one-band Hubbard model derived
from the extended three-band Hubbard model. We solve exactly a square cluster
of 10 unit cells and average the results over all possible boundary conditions,
what leads to smooth functions of frequency. Upon doping, the Fermi energy
jumps to Zhang-Rice states which are connected to the rest of the valence band
(in contrast to an isolated new band in the middle of the gap). The transfer of
spectral weight depends on the parameters of the original three-band model not
only through the one-band effective parameters but also through the relevant
matrix elements. We discuss the evolution of the gap upon doping. The optical
conductivity of the doped system shows a mid-infrared peak due to intraband
transitions, a pseudogap and a high frequency part related to interband
transitions. Its shape and integrated weight up to a given frequency (including
the Drude weight) agree qualitatively with experiments in the cuprates for low
to moderate doping levels, but significant deviations exist for doping .Comment: 11 pages (tex), 14 figures (ps
A process very similar to multifractional Brownian motion
In Ayache and Taqqu (2005), the multifractional Brownian (mBm) motion is
obtained by replacing the constant parameter of the fractional Brownian
motion (fBm) by a smooth enough functional parameter depending on the
time . Here, we consider the process obtained by replacing in the
wavelet expansion of the fBm the index by a function depending on
the dyadic point . This process was introduced in Benassi et al (2000)
to model fBm with piece-wise constant Hurst index and continuous paths. In this
work, we investigate the case where the functional parameter satisfies an
uniform H\"older condition of order \beta>\sup_{t\in \rit} H(t) and ones
shows that, in this case, the process is very similar to the mBm in the
following senses: i) the difference between and a mBm satisfies an uniform
H\"older condition of order ; ii) as a by product, one
deduces that at each point the pointwise H\"older exponent of is
and that is tangent to a fBm with Hurst parameter .Comment: 18 page
- …
