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Abstract 

We present recent advancements in our passive trinocular 
stereo system. These include a technique for calibrating and 
rectifying in a very efficient and simple manner the triplets 
of images taken for trinocular stereovision systems. Mter 
the rectification of images, epipolar lines are parallel to the 
axes of the image coordinate frames. Therefore, potential 
matehes between the three images satisfy simpler relations, 
allowing for a less complicated and more efficient matching 
algorithm. We also describe a more robust and general con­
trol strategy now employed in our trinocular stereo system. 
We have also developed an innovative method for the recon­
struction of 3-D segments which provides better results and 
a new validation technique based on the observation that 
neighbors in the image should be neighbors in space. Ex­
periments are presented demonstrating these advancements. 

1 Introduction 

Computational stereo provides an attractive solution for the prob­
lem of recovering depth from 2-D images. One simply needs to 
determine a homologue (i.e. solve the correspondence problem) 
between the images and depth is easy to recover by using pro­
jective geometry. Computational stereo can be divided into two 
classes with respect to the primitives used for matching: intensity 
based and feature based. In recent years, feature based stereo has 
proven to be more reliable and robust than intensity based meth­
ods. However, such techniques have been plagued by slow exe­
cution time due to the necessity of detecting and then matching 
features. Indeed, the crucial and most time consuming portion of 
computational stereo is the matching process. Most systems make 
use of a variety of constraints, such as the epipolar constraint, to 
reduce the search space thereby improving the matching speed. 

In computational stereo, tokens from one image are matched 
against tokens from another image. These tokens can be inten­
sity levels or features extracted from the raw image. Recently, 
the problem of simplifying the matching process by use of a third 
camera has been investigated by a number of researchers[13,15, 
10,8,9,12J (for a detailed reference see (14J). We have described 
elsewhere an innovative method for matching line segments which 
makes extensive use of the epipolar constraint by utilizing 3, rather 
than 2, cameras {5,4]. Although this method was fast and reliable, 
there was still the need to compute the intersection of the epipolar 
line with candidate segments. IT we can align the epipolar lines 
such that they are parallel to each other and with the axes of the 
image planes (Le. horizontal and vertical), we can dramatically re­
duce the computational effort for the search process. This problem 
has been addressed by others who have used mechanical means to 
achieve conjugate epipolar lines through camera placement. These 
methods have proved cumbersome and unreliable in practice due 
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to the inaccuracy of the mechanical devices. Furthermore, such 
methods restrict the camera placement. In a previous paper, we 
formally developed a general rectification method requiring only 
the knowledge of the perspective transformation matricies of each 
camera[3]. Here we describe the results of experiments we have 
conducted with this rectification method and our trinocular stereo 
system. 

In the following sections, we describe further enchancements 
to our trinocular stereo system. These improvements include a 
more robust and general control strategy. We have also developed 
a new method for the reconstruction of 3·D segments which pro­
vides better results and a novel validation technique based on the 
observation that neighbors in the image should be neighbors in 
space. Lastly, experiments demonstrating these advancements are 
presented. 

2 Overview of Trinocular Stereo 

Figure 1 illustrates the geometric constraints of trinocular stereo­
vision. Camera i (i = 1,2 or 3) is represented by its optical center 

Ci and its image plane 'Pi. Given a scene point P its image Ii by 
camera i is given by the intersection of the line PCi with the plane 
'Pi. This is the classical pinhole modeL Points 110 12 et 13 form a 
triplet of homologous image points. 

D23 

Figure 1: Geometric constraints of trinocular stereovision 

Given a pair (i, j) of cameras and a physical point P, the epipo­
lar plane Qij is defined by the triplet of points (Ci,P,Cj)' The 
intersection of this epipolar plane with camera plane 'Pi is t~e 
epipolar line Dij, while its intersection with camera plane 'Pj III 

the epipolar line Dji. Dij and Dji are called conjugated epipolar 

lines. Any point Ii on Dij (resp. Ij on Dji) has its homologous 
image point Ij on Dji (resp. Ii on Dij). Therefore, using tvlO 
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ca,meras, the search for homologous image points is a search along 
CI)lIjugated epipola.r lines. 

}.sone can see on figure 1, a scene pointP produces three pairs 
of homologous epipola.r lines. When the image points (I"Ij,1,,) 
iltm a triplet of homologous image points, then Ii is necessarily 
loI:&ted at the intersection of the epipolar lines Dij and Dil: respec-

. t;ively defined by Ij and I". Therefore the search for homologous 
image points between two images can now be reduced to a simple 
verification at a precise location in the third image. For instance 
checking that (11,12) form a pair of homologous image points con­
sists in verifying the presence of 13 at the intersection of D31 and 

D32. 
An overview of the calibration used in our system can be found 

in Appendix A. 

2.1 Overview of Previous System 

We have previously presented an original trinocular approach to 
stereovision[5,6]. Our scheme was a four step process (for details 
see [5]): 

1. Preprocessing - Acquire an image and extract the features 
to be matched. In our case, linear segments, which are polyg­
onal approximations to edge pixels, are used. 

2. Hypothesis Prediction - For each segment in the first im­
age, locate a match, within local geometric coustraints, from 
the candidate segments in the second image. By employing 
the trinocular geometry described above, use the third image 
to verify or refute the hypothesis. 

3. Hypothesis Validation Following the hypothesis predic­
tion step, about 10 percent of the hypothesized triplets are 
incorrect. The validation phase uses local constraints in the 
image, the disparity gradient, to validate the matches. After 
hypothesis validation, less than 1 percent of the matches are 
erroneous. 

4. 3-D reconstruction Reconstruct the 3-D segment from the 
common portion of the triplet of matched 2-D segments. 

We demonstrated the effectiveness of utilizing the third canlera 
'?th this approach. Yet, further advancements in terms of effi­
Ciency and reliability are possible. 

One such modification changes the order of the preceeding 
steps. We have found through experimentation that if we recon­
struct after the hypothesis step, the validation procedure is more 
e:rective. This allows correct matches, which previously were con­
;d~~ spurious by the validation criteria, to be properly validated. 

hia 18 explained in the section on validation. 

3 Rectification of the images 

~ the epipolar geometry, the search for candidate matches 
11 redUCed from a 2 dimensional search to a 1 dimensional search' 
~tches must lie on the epipolar line. Although quite simple, on~ 
of needs to compute the epipolar line attached to the midpoint 
• a segment in the first image and subsequentially, compute the 
llItersections with candidate segments. Even when optimized, this 
:ethod is computationally expensive, when applied to real data, 
::, to the number of intersections which must be computed. We 
-:ad enhance the process if we could achieve parallel conjugate ::lar ~es. Furthermore if we align these parallel epipolar lines 

the unage coordinate frame, computation becomes minimal. 

Since all epipolar lines pass throngh the epipole, we can achieve 
parallel epipolar lines, in the image, by rejecting the epipole to 
infinity. This can be accomplished by reprojecting the original 
image onto a new image plane which is parallel to the vector formed 
by the two optical centers (see figure 2). For three cameras, it 
suffices to chose a plane parallel to the plane containing the optical 
centers of the three cameras. Details of this process, as well as 

the mathematical derivation, are rigorously lUidressed in another 
paper(3]. 

Figure 2: Rectification of two images 

Once we have parallel epipolar lines, our next objective is to 
judiciously chose our new image coordinate frames such that we 
have the advantageous relationship: 

UI = U3 

VI = V2 

U2 = V3 

Figure 3 illustrates this concept. This is analogous to attaching the 
UV coordinate frame of the images to the epipolar lines. Since the 
horizontal and vertical lines are parallel conjugate epipolar lines, 
this reduces the search to simply looking along the horizontal or 
vertical for a. potential match. 

The rectification matricies are given in the appendix. Recti­
fication requires only 6 multiplications, 6 additions and 2 divides 
per end-point. Figure 4 shows a triplet of images of a typical room 
scene and Figure 5 shows the rectified triplet. 

113 = U2 

I; 

[7 
Ul = U3 

Ir I' 2 
III - V2 

Figure 3: Mter the rectification of three images 
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Figure 4: Typical Room Scene 

Figure 5: Rectified Room Scene 

Rectification drastically reduces the amount of computation 
necessary in the hypothesis formation step of the stereo process. 
We have found that the rectification process decreases the match­
ing time by more than a factor of 2. Table 1 shows the results 
of rectifying the segments prior to matching for several different 
scenes. Processing times are given for a Sun 3/50 workstation. 

4 Reconstruction 

Given a hypothesis, that is a matched triplet of segments from the 
3 images, we want to reconstruct a 3-D segment in space which 
corresponds to the matched 2-D segments. In our previous paper, 

procusing times -
number oJsegmem. previous new 
caml cam.! cam3 mGtcher rectification metcher 

scene1 548 531 536 11.4208 0.6968 5.89j() 
scene2 393 405 371 6.7562 0.4644 3.4694 
scene3 203 199 205 1.6166 0.1988 0.1410 
scene4 262 240 284 2.5066 0.2818 1.1454 
sceneS 283 266 280 2.6228 0.2984 1.1122 
scene6 312 331 336 3.3864 0.3482 1.5170-
scene7 305 352 338 3.2536 0.3814 1.5106 -

Table 1: Speed up of Rectification 

this process was performed by locating the common portion of the 
3 segments using the epipolar geometry and then projecting the 
endpoints to find the physical line corresponding to the imaged 
segments [5]. This is shown in Figure 6. Actually, this figure is 
misleading since in practice 3 planes never intersect in a line. In 
practice, we are in the situation depicted by Figure 7. The 3-D 
segment we would like to recover is contained in the volume defined 
by the intersections of the planes. We decompose this problem in 
the following two subproblems: 

1. How to reconstruct 3D lines from their 2D images. 

2. How to compute the corresponding 3D endpoints. 

Figure 6: Previous Method 

Figure 7: Actual Case of Three Planes 
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4.1 Building 3D lines from their 2D images 

More formally, given three 2D lines di, one seeks the 3D line D 
"hose projections d~ on cameras i (i = 1,2,3) best approximate 
the 2D lines di (cf. figure 8). 

Fordoing this, one uses minimal representation of lines. There­
{ore, assuming di is not parallel to the 11 axis, I it is represented by 
the parameters (Oi,Pi) such that the equation of d; in the image 

plane of camera i is 

QiUi + Vi + Pi = 0 

Figure 8: Building 3D lines from their 2D images 

Assuming that D is not perpendicular to the z axis, 2 it is repre­
sented by the parameters (a, b, p, q) such that D is defined by the 
equations 

{ 
r=az+p 
y=bz+q (1) 

One assumes that the perspective transformation of each cam­
m is represented by a 3x4 matrix Ti computed during a prelimi­
nary calibration stage [1]. If we denote by t i'k the element of rank 
(j,k) in the perspective matrix T;, saying ~hat the projection of 
D on camera i is di is equivalent to saying that the following two 
equations hold (see appendix): 

o(a;<.+th +P;I~)+6(<>;<.+th+p;I;')+(Oi<.+t;"+P;lk) = 0 (2) 
P( ... ttl + th + p;1~1+ q(<>;1:2 +t~ + p;1;') + (oA. + I~. + Pit;') = 0 (3) 

This system provides two independant linear equations on the 
1IIlknowns (a,b) and (p,q) respectively: therefore two images are 
enough to solve for (a,b,p,q) exactly. Given three images, the 
system becomes overconstrained, and one must define an error 
criterion. 

To do 50, we consider the uncertainties on the parameters of the 
2D lines, and we take them into account explicitely by computing a 
recursive weighted least square solution (Kalman Filter approach). 
This approach provides not only a better estimate of (a,b,p,q) 
(compared to a simpler least-square) but also an estimate of its 
qua.lity under the form of a 4x4 symetric covariance matrix W D. 

The interested reader is referred to [1,11,2]. 

4.2 Computing 3D endpoints 

Ravingcomputed the parameters of a supporting 3D line, one must 
lISe the endpoints of the 2D image segments to define the endpoints 
-;----=~~--------

2 one 1IBes the symmetric parametn.ation for Jines parallel to the It axis 
~e 1IBes two complem~ntary parametrization respectively for Jines perpen-

to the z:z: or zr planes. ' 

of a 3D segment. For each endpoint Ii of a 2D segment in image i 
we compute the 3D line Li supported by Gil; and the 3D point Pi 
of D which is closest to Di (the common perpendicular). 

Therefore, given the two endpoints aj and b; of a 2D segment, 
one obtains the endpoints Ai and Bi of a 3D segment supported by 
D. This is illustrated by figure 9. 

\ 
"FiktIfEf9:-Building 3D segments from 2D segments 

This operation is repeated for the endpoints of the correspond­
ing segment in images 2 and 3, and one keeps the 3D segment on 
D which is the intersection of AIBl> A2B2 and A3B3. 

This algorithm for reconstruction gives us better results than 
our previous method. The reconstructed 3-D segments are in the 
same position but the lengths of the segments are longer as seen 
in Figure 10. Notice the improvements with the segments above 
the window, the desk, and the lights on the ceiling. 

5 Validation 

After the hypothesis prediction step, about 10 percent of the hy­
pothesized matches are erroneous. This is due to the existence of 
verifying segments in the third image which fulfill both the geomet­
ric and epipolar constraints and is generally caused from artifacts 
in the scene. We must employ a validation step to filter out these 
bad hypotheses. To do this, we use the following two constraints: 

1. Uniqueness Constraint - This allows, at most, one hy­
pothesis for each matched segment. We constrain uniqueness 
only within epipoIar bands so that errors with segmentation 
do not cause problems. 

2. Regularity Constraint - If we assume that objects in the 
scene are smooth, the two segments belonging to the same 
object which are neighbors in the image will also be recon­
structed as neighbors in space (except at a few depth discon­
tinuities ). 

The uniqueness constraint is quite simple. If a segment matches 
more than one segment in either of the other two images and the 
segments overlap within the epipoIar band, then this constraint is 
violated. This is shown for a camera pair in Figure 11. Recall 
that the epipoIar lines are horizontal thus the epipolar bands are 
delimited by the endpoints of the segments. Althongh sl matches 
both S~ and ~, the match is considered valid since S~ and ~ 
do not overlap within an epipolar band. Presumably, S~ and S~ 
belong to a broken edge. This can be caused by errors in the 
preprocessing step. Whereas the match sl with S? and S~ violates 
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Figure 10: Results of old and new 

the uniqueness constraint since they do overlap within the epipolar 
band. 

1 2 

Figure 11: Uniqueness Constraint 

The regularity constraint we now use differs substantially from 
the previous version. In our previous system, we computed the 
local neighborhood graph for the matched segments and used the 
disparity gradient measure to discriminate between good matches 
and erroneous ones. Since the disparity gradient measure was only 
computed for the mid-point of a segment, this method sometimes 

discarded good matches and occasionally allowed bad matches to 
pass the validation test. 

We have developed a new method based on the assumption 
that neighboring segments in the image are likely to be neighboring 
segments in 3-space. We define the following acceptance criterion, 
~: 

where: 
if i is a supporting neighbor 
otherwise 

N == total number of neighbors 

(4) 

(5) 

(6) 

A neighbor is any segment which is physically close in the image 
(within a local 2-D neighborhood). We compute the local 2·D 
neighborhood as before[4]. A supporting neighbor is a neighbor in 
the image whose reconstructed segment lies close to the segment 
under consideration. Thus, given a hypothesis, a matched triplet 
of 2-D segments and their reconstructed 3-D segment 5, compute 
the ratio of the matched 2-D neighbors (image neighbors) whose 
reconstructed 3-D segment is sufficiently close to 5 and the total 
number of neighbors. 

Since we have already reconstructed all neighbors, it is straight­
forward to compute the distance between 3-D segments although 
it is not computationally efficient to do so. To determine whether 
a neighboring segment is supporting or not, we use a rectilinear 
parallelpiped containing 5 as a clipping box to rapidly determine 
3-D neighbors. The box is constructed, in 3-space, at an expeT­
imentally determined distance from the segment, in our case, 50 
em. It suffices to compute the intersections of the 3-D segments 
in question with this box. Using this criterion, much less than 1 
percent of our final matches are incorrect. 

6 Experiments and Results 

This stereo matching technique has been tested on a number of 
indoor scenes. We only present the following typical results. 

Three images of a room are taken simultaneously with our pre­
viously calibrated three camera system mounted on our mobile 

robot. These 3 scenes were taken by rotating the mobile robot. 
A triplet is digitized, and from these 512x512 images, edge points 
are extracted and chains of connected edge points are built and 
approximated by a set of linear segments, oriented with respect 
to the contrast sign across the segment. These images are then 
rectified for processing efficiency. At this point, the preprocessing 
is complete. Hypotheses are generated. For each hypothesis, a 3-D 
segment is constructed. Using these 3-D segments, we can validate 
the matches to eliminate spurious hypotheses. Figure 12 shows the 
original segments used for matching. Figure 13 shows the rectified 
segments. Figure 14 show the results of matching and validation. 

7 Conclusion 

In this paper, we have presented the recent advancements in our 
trinocular stereo system. These included a technique for calibrat­
ing and rectifying in a very efficient and simple manner the triplets 
of images taken for trinocular stereovision systems. After the rec­
tification of images, epipolar lines are parallel to the axes of the 
image coordinate frames: therefore, potential matches between t~ 
or three images satisfy simpler relations, allowing for a simpler an 
more efficient matching algorithm. 
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Figure 12: Segments Used for Matching Figure 13: Mter Recti1ication 
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Figure 14: Results ofTrinocular Stereo 

We also described a more robust and general control strategy 
now employed in our system. We have shown an improved method 
for reconstruction of the 3-D segments which provides better re-

sults than our previous system. We have also shown a new vali­
dation technique based on the observation that neighbors in the 
image should· be neighbors in space. Results from experiments 
demonstrating these ideas have been presented . 

A Computing a 3D line D from its 2D pro­
jections di 

One assumes that the perspective transformation of each camera is rep­
resented by a 3d matrix T; computed during a preliminary calibration 
stage [1]. :Ii is used to relate the projective coordinates (z, y, z, I)' of a 
3D point P to the projective coordinates Ii = (Ui' v;, Si) of its image in 
camera i by: . 

If P is not in the focal plane of camera i, then the image coordinates of 
Ii are given by: 

Ii = ( Ui ) = ( U,/Si ) 
Vi V;/Si 

If Ci is the optical center for camera i, then three 3x3 rectification 
matrices, called Ri> R2 and R3, are defined as (for details see[3]): 

( 

(Ci-l XCi)' ) 
R; = (Ci X CHI)' [I; x t~ t~ x ti ti x tll 

(CI x C2 +C2 x C3+C3 XCI)' 

where i + 1 = 1 if i = 3 and i-I = 3 if i = 1. 

The image of a generic point P = (z,y,z)' of D by camera i is 
If = (ul,vn' such that: 

ul = (ath +bth + t)a)z + pth + qth + tL, 
(at31 + bta2 + tk)z + ptal + qt32 + tM 

v! = (atb + bt~2 + tb)z + pti! + qti? + t2. 
• (at:11 + btl" + tk)z + ptlu + qtl" + tM 

where t}~ is the element of rank (j,l:) in the perspective matrix n. 
Saying that If belongs to di means that 

ll:iU: + vr + Pi = 0 

If the preceding relation has to be verified for any P E D, except Ch 
then the following two equations mun hold: 

Il:i( atil + bti2 + tis) + (at;l + bt;2 + t~s) + Pie at;l + btk + t~) = 0 

Il:i(ptil + qti2 + ii.) + (pt;l + 41t;2 + t~.) + Pi(pt~l + 41tk + t~) = 0 

By reorganizing the coefficients, one can see that these equations are the 

equations 2 and 3. 
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