31 research outputs found

    Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens

    Get PDF
    Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes—such as transcriptional profiles—at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays. Keywords: single-cell RNA-seq; pooled screen; CRISPR; epistasis; genetic interaction

    Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis

    Get PDF
    BACKGROUND AND PURPOSE: Chronic kidney disease with reduced estimated glomerular filtration rate or elevated albuminuria increases risk for ischemic and hemorrhagic stroke. This study assessed the effects of sodium glucose cotransporter 2 inhibitors (SGLT2i) on stroke and atrial fibrillation/flutter (AF/AFL) from CREDENCE (Canagliflozin and Renal Events in Diabetes With Established Nephropathy Clinical Evaluation) and a meta-Analysis of large cardiovascular outcome trials (CVOTs) of SGLT2i in type 2 diabetes mellitus. METHODS: CREDENCE randomized 4401 participants with type 2 diabetes mellitus and chronic kidney disease to canagliflozin or placebo. Post hoc, we estimated effects on fatal or nonfatal stroke, stroke subtypes, and intermediate markers of stroke risk including AF/AFL. Stroke and AF/AFL data from 3 other completed large CVOTs and CREDENCE were pooled using random-effects meta-Analysis. RESULTS: In CREDENCE, 142 participants experienced a stroke during follow-up (10.9/1000 patient-years with canagliflozin, 14.2/1000 patient-years with placebo; hazard ratio [HR], 0.77 [95% CI, 0.55-1.08]). Effects by stroke subtypes were: ischemic (HR, 0.88 [95% CI, 0.61-1.28]; n=111), hemorrhagic (HR, 0.50 [95% CI, 0.19-1.32]; n=18), and undetermined (HR, 0.54 [95% CI, 0.20-1.46]; n=17). There was no clear effect on AF/AFL (HR, 0.76 [95% CI, 0.53-1.10]; n=115). The overall effects in the 4 CVOTs combined were: Total stroke (HRpooled, 0.96 [95% CI, 0.82-1.12]), ischemic stroke (HRpooled, 1.01 [95% CI, 0.89-1.14]), hemorrhagic stroke (HRpooled, 0.50 [95% CI, 0.30-0.83]), undetermined stroke (HRpooled, 0.86 [95% CI, 0.49-1.51]), and AF/AFL (HRpooled, 0.81 [95% CI, 0.71-0.93]). There was evidence that SGLT2i effects on total stroke varied by baseline estimated glomerular filtration rate (P=0.01), with protection in the lowest estimated glomerular filtration rate (45 mL/min/1.73 m2]) subgroup (HRpooled, 0.50 [95% CI, 0.31-0.79]). CONCLUSIONS: Although we found no clear effect of SGLT2i on total stroke in CREDENCE or across trials combined, there was some evidence of benefit in preventing hemorrhagic stroke and AF/AFL, as well as total stroke for those with lowest estimated glomerular filtration rate. Future research should focus on confirming these data and exploring potential mechanisms

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Novel Triazine Schiff Base-Based Cationic Gemini Surfactants: Synthesis and Their Evaluation as Antiwear, Antifriction, and Anticorrosive Additives in Polyol

    No full text
    Two novel triazine Schiff base-based cationic gemini surfactants namely N,N′-bis{(p-(N,N,N-tetradecyldimethylammonium bromide)- benzylidene} 6-methyl-1,3,5-triazine-2,4-diamine (14-MTR-14) and N,N′- bis{(p-(N,N,N-tetradecyldimethylammonium bromide)benzylidene} 6-phenyl- 1,3,5-triazine-2,4-diamine (14-PTR-14) were synthesized following the two- step reaction. First the intermediate adduct was synthesized by reaction of the 4-(dimethylamino)benzaldehyde with 1-bromotetradecane. In the second step, the germinal surfactants 14-MTR-14 and 14-PTR-14 were synthesized by imine coupling with this intermediate adduct with 6-methyl-1,3,5-triazine-2,4- diamine and 6-phenyl-1,3,5-triazine-2,4-diamine, respectively. Both were characterized using elemental analysis (CHN), infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetry (TG). The compounds were then evaluated as anticorrosive and lubricity improver additive in polyol lube base oil. Both the surfactants show the similar anticorrosive activities. The antiwear and antifriction characteristics were estimated in terms of average wear scar diameter (AWSD) and average friction coefficient using a four ball test following ASTM D4172B. It was found that the 14-MTR-14 is comparatively more effective than 14-PTR-14. 14-MTR-14 reduces the AWSD of the polyol from 690 to 575.83 μm while the average friction coefficient decreases from 0.110 to 0.082 at 4000 ppm doping concentration

    Use of an Acylated Chitosan Schiff Base as an Ecofriendly Multifunctional Biolubricant Additive

    No full text
    Two acylated chitosan Schiff base samples ACSB-1 and -2 were synthesized via a two-step reaction pathway. First the chitosan Schiff base (CSB) was prepared utilizing 3,5-di-tert-butyl-4-hydroxybenzaldehyde. In the second step, esterification with lauroyl chloride catalyzed by 4-(dimethylamino)pyridine (DMAP) in N,N-dimethylacetamide (DMAc) solvent affords the final product acylated chitosan Schiff base (ACSB-1 and -2). The products were identified and characterized by Fourier transform infrared (FT-IR) spectroscopy, CHN analysis, thermogravimetry (TG), X-ray diffraction (XRD), etc. The synthesized compounds were evaluated as multifunctional additives for antioxidant and lubricity properties in N-butyl palmitate/stearate. A rotating pressure vessel oxidation test (ASTM D2272) was used for evaluating antioxidant property. The thermo-oxidative stability of the N-butyl palmitate/stearate oil was increased 1.5 times by using this additive in 3000 ppm concentration of ACSB-2 at 150 °C. Lubricity property was evaluated by using the four ball test (ASTM D4172A) which was performed at 75 °C tem- perature, frequency of 1200 rpm, and 198 N load for 60 min. The lubricating efficiency of the synthesized sample was estimated by measuring the average wear scar diameter (WSD) of the spherical specimen. The WSD is also found to be decreased significantly by adding these compounds as additives in N-butyl palmitate/stearate. Both samples passed the copper strip corrosion test (ASTM D130) too

    Evaluation of a Novel Hindered Phenolic Triazine Schiff Base as Multifunctional Additive in Biolube and Biodiesel

    No full text
    A novel hindered phenolic triazine Schiff base TrBzEd was synthesized. At first the intermediate triazine Schiff base TrBz was synthesized by imine coupling of the 2-chloro-4,6-diamino-1,3,5-triazine with 3,5-di-tert-butyl- 4-hydroxybenzaldehyde. In the second step, additive TrBzEd was synthesized by reacting TrBz with the ethylenediamine. After characterization by CHN, FT-IR, NMR and TG, TrBzEd was evaluated as antioxidant and lubricity improver additive in both the polyol (biolube reference fluid) and biodiesel (Jatropha curcas). The RBOT and Rancimat tests were done to evaluate the antioxidant performance in polyol and biodiesel respec- tively. Lubricity improving characteristics were evaluated by doing four-ball test with polyol blend and HFRR test with biodiesel blends with TrBzEd in different concentra- tions. It was found that the TrBzEd improves the oxidative stability of the polyol significantly as the RBOT time of the blank polyol was found to be increased from 6.72 ± 0.15 to 12.57 ± 0.09 min at 2000 ppm concentration. It also showed moderate antiwear and antifriction characteristics in it. Antioxidant performance of this additive in biodiesel too was found to be excellent as Rancimat induction period at 1500 ppm additive concentration was found to be 13.14 ± 0.07 h which was high in comparison to the un- doped biodiesel by 2.19 times

    Use of an Acylated Chitosan Schiff Base as an Ecofriendly Multifunctional Biolubricant Additive

    No full text
    Two acylated chitosan Schiff base samples <i>ACSB-1</i> and -<i>2</i> were synthesized via a two-step reaction pathway. First the chitosan Schiff base (<i>CSB</i>) was prepared utilizing 3,5-di-<i>tert</i>-butyl-4-hydroxybenzaldehyde. In the second step, esterification with lauroyl chloride catalyzed by 4-(dimethylamino)­pyridine (DMAP) in <i>N</i>,<i>N</i>-dimethylacetamide (DMAc) solvent affords the final product acylated chitosan Schiff base (<i>ACSB-1</i> and -<i>2</i>). The products were identified and characterized by Fourier transform infrared (FT-IR) spectroscopy, CHN analysis, thermogravimetry (TG), X-ray diffraction (XRD), etc. The synthesized compounds were evaluated as multifunctional additives for antioxidant and lubricity properties in <i>N</i>-butyl palmitate/stearate. A rotating pressure vessel oxidation test (ASTM D2272) was used for evaluating antioxidant property. The thermo-oxidative stability of the <i>N</i>-butyl palmitate/stearate oil was increased 1.5 times by using this additive in 3000 ppm concentration of <i>ACSB-2</i> at 150 °C. Lubricity property was evaluated by using the four ball test (ASTM D4172A) which was performed at 75 °C temperature, frequency of 1200 rpm, and 198 N load for 60 min. The lubricating efficiency of the synthesized sample was estimated by measuring the average wear scar diameter (WSD) of the spherical specimen. The WSD is also found to be decreased significantly by adding these compounds as additives in <i>N</i>-butyl palmitate/stearate. Both samples passed the copper strip corrosion test (ASTM D130) too
    corecore