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Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay 

complex phenotypes – such as transcriptional profiles – at scale. Here, we develop Perturb-seq, 

combining single cell RNA-seq and CRISPR based perturbations to perform many such assays in 

a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, 

focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide 

(LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states 

affected by individual perturbations and their genetic interactions. We posit new functions for 

regulators of differentiation, the anti-viral response, and mitochondrial function during immune 

activation. By decomposing many high content measurements into the effects of perturbations, 

their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of 

pooled genomic assays.
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INTRODUCTION

Genetic screens systematically analyze gene function in mammalian cells. Such screens are 

designed in either: (1) an individual (“arrayed”) format, where each perturbation is delivered 

and assessed separately; or (2) a pooled format, performed en masse. Pooled readouts 

measure cell autonomous phenotypes, such as growth, drug resistance, or marker expression. 

Pooled screens are more efficient and scalable, but have been limited to low-content 

readouts. Distinguishing between different molecular mechanisms that yield similar 

phenotypes requires time and labor intensive follow-up.
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Bridging the gap between rich profiles and pooled screens has been challenging. In 

mammalian cells, a few studies transcriptionally profiled hundreds of individual 

perturbations (Berger et al., 2016; Parnas et al., 2015). In yeast (Hughes et al., 2000), up to 

~1,500 knock out (KO) strains have been assessed (Kemmeren et al., 2014). Even signature 

screens were only performed in centralized efforts (Lamb et al., 2006).

Profiling may particularly help interpret the combined nonlinear effects of multiple factors. 

Comprehensive analysis of genetic interactions in growth phenotype between pairs of genes 

has been performed in yeast (Costanzo et al., 2016). In mammals, only small sets of pre-

selected pairs have been assessed for cell viability (Bassik et al., 2013) or morphology 

(Laufer et al., 2013). One yeast study determined the combined effects of regulators on 

expression profiles in a circuit of 3–5 genes (Capaldi et al., 2008). Very few studies have 

examined higher order interactions (Elena and Lenski, 1997; Haber et al., 2013), and none 

have coupled those with a high content scalable readout.

To address this challenge, we develop Perturb-seq, combining the modularity of CRISPR/

Cas9 to perform multi-locus gene perturbation (Cong et al., 2013; Qi et al., 2013) with the 

scale of massively parallel single cell RNA-seq (scRNA-seq) (Klein et al., 2015; Macosko et 

al., 2015) as a rich genomic readout. We demonstrate Perturb-seq in primary post-mitotic 

immune cells and in proliferating cell lines. We develop a computational framework, 

MIMOSCA, to decipher the effect of individual perturbations and the marginal contributions 

of genetic interactions on the level of each transcript, program, and cell state. Our 

framework can be extended to other high dimensional molecular phenotypes or diverse cell 

metadata.

RESULTS

Perturb-seq: pooled, combinatorial CRISPR screens with scRNA-seq readout

We developed Perturb-Seq to combine a pooled CRISPR screen with scRNA-seq by 

encoding the identity of the perturbation on an expressed guide barcode (GBC) (Figure 1 

and S1). We first infect cells with a pool of lentiviral constructs that encode sgRNAs (Figure 

1A). Here and in a companion study (Adamson et al., 2016), we designed and used a 

CRISPR lentiviral vector that both delivers an sgRNA to a cell and reports on the identity of 

the sgRNA by an expressed GBC (Figure 1B). By varying the multiplicity of infection 

(MOI), we tune the screen to study single gene or epistatic effects. Cells are grown, 

differentiated, and/or stimulated, followed by scRNA-seq (Figure 1A). scRNA-seq, 

performed in a single pool, tags each cell’s mRNA, including the GBC, with a unique cell 

barcode (CBC) and a unique molecular identifier (UMI) (Figure 1A). The CBC associates 

the cell’s transcriptional profile with the delivered genetic perturbation(s), encoded by the 

GBC. Here, we use CRISPR/Cas9 in the KO context. In a companion study (Adamson et al., 

2016), Perturb-seq is used with CRISPRi.

We performed six Peturb-seq experiments, analyzing 200,000 cells (Figure 1C). In bone-

marrow derived dendritic cells (BMDCs), we targeted 24 transcription factors (TFs) (Table 

S1) (Amit et al., 2009a; Garber et al., 2012), and measured the effects pre-stimulation (0h) 

and at 3h post-LPS. In K562 cells, we targeted 14 TFs and 10 cell cycle regulators, in 
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separate pooled experiments (Table S1). For K562 TFs, we performed experiments using 

lower and higher MOI, and at two time points. We collected reference scRNA-seq data from 

unperturbed cells separately (Table S1).

Perturb-seq detection of GBCs and on-target knockdown

We developed an optimized enrichment protocol to detect the GBCs (Methods and 
Resources). We associated each sgRNA with its corresponding GBC by sequencing, and 

converted the plasmids into lentivirus for pooled transduction. The plasmid construct 

included an ORF encoding a BFP-T2A-Puromycin (Figure 1B), allowing us to select for 

transduced cells by FACS sorting or by antibiotics. Finally, we designed a PCR protocol to 

enrich for the GBC following WTA (Figure 1B). In some cases, we observed more than one 

GBC in a cell. To distinguish between those arising from multiple infections and those due 

to PCR chimeras or ambient RNA, we filter low-abundance contaminants by normalizing 

the observed GBCs within each CBC (Figure S1D,E), and retain cells with more than one 

GBC for epistasis analysis (Figure 1D). Most of these are not doublets, given their higher 

frequency than expected by our cell yield, and their comparable number of genes vs. single 

GBC cells (Figure S1F).

We estimated the probability of GBC detection and MOI by assuming a zero-truncated 

Poisson distribution (due to BFP+ selection), convolved with a binomial process (for the 

probability of detection) (Methods and Resources). The predicted fit was indistinguishable 

from the observed frequencies of number of guides per cell (Figure S1A–C, KS-test). We 

had a 94% (92–96%) detection probability with an initial MOI of ~0.63 in the K562 TF 

pool, a 98% probability with an MOI of ~0.35 in the cell cycle pool, and a 60% detection 

probability with an MOI of ~1.4 in BMDCs at 3h. The lower detection in BMDCs is due to 

the lower complexity of these smaller cells’ profiles (Table S1), and increases (to 70%) after 

filtering cells with the lowest complexity. Rather than apply an arbitrary filter, we address 

the detection rate in our analysis.

For most of the guides, there is a significant reduction in the expression of the targeted gene 

(Figure 1E and S1G–I, averaged over cells with a particular guide). The ability to determine 

a reduction is affected by the target’s expression level in WT cells (Figure S1I), the cell’s 

capture efficiency, and incomplete nonsense mediated decay of frameshifted transcripts.

A computational model to stratify transcriptional effects of single cell perturbations

We devised a computational framework, MIMOSCA (Multi Input, Multi Output Single Cell 

Analysis) based on a regularized linear model, to estimate the impact of perturbations on 

gene expression (Figure 1F, 2 and S2, Methods and Resources). In simplest form, the 

model predicts each gene’s (log) expression level (expression matrix Y) as a linear 

combination of the effects of guides (design matrix X), yielding the regulatory effect of each 

guide on each gene (coefficient matrix β). We do not use information on which gene each 

guide targets or which guides target the same gene. We fit the coefficient matrix with elastic 

net regularization, to reduce the number of hypotheses tested, and to address correlated 

covariates and noisy data. We evaluate the significance of the each coefficient with a 

permutation-based test (Figure S2D–G).
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Next, we use the framework to account for technical covariates (Figure 2A–H). We account 

for the number of observed transcripts in a cell (cell quality) (Shalek et al., 2014), by 

including them as covariates in the model. We also address the probability that a 

perturbation successfully affected the cell, filtering cells that did not have a successful 

perturbation (Figure 2H and S2I, Methods and Resources), as often observed in CRISPR 

experiments. We use the initial regulatory matrix (β) fit by the model as a first assessment of 

the perturbations’ effects. We revisit each cell and evaluate the extent to which its profile 

was consistent with the assigned perturbation (Figure 2H, right). Finally, we re-estimate the 

model with a corrected perturbation-to-cell assignment. (This iteration is analogous to 

applying Expectation-Maximization to the linear model). Based on the estimated fit, over 

66% of cells are affected by their delivered perturbation, on average (Figure 2H). While 

filtering significantly improves the model fit, we did observe consistent, albeit dampened, 

effects without this procedure.

We also consider biological covariates of distinct cell sub-types (e.g., in BMDCs (Helft et 

al., 2015; Shalek et al., 2014)) or states (e.g., the cell cycle in K562 cells) (Figure 2D,E,G) 

(Buettner et al., 2015; Zeisel et al., 2015). We classify profiles using the matched, 

genetically unperturbed, experiments (Methods and Resources), and incorporate the 

predicted classifications of each cell as covariates. We fit the model either with or without 

cell state covariates. Cell states explain a significant proportion of observed variation (Figure 

2D), and some of the sgRNAs’ effects are accounted for (Figure 2F vs. G), suggesting that 

those perturbations may have primarily affected subtype proportions.

We can incorporate nonlinear interactions in our framework, by adding interaction terms 

between covariates (Figure 2H), such as genetic interactions between perturbations or 

interactions between perturbations and cell states (cell state specific gene expression 

changes). Here, we do this for genetic interactions.

The linear model is robust, reproducible and predictive

We determined the proportion of the variance in the data explained by each of the three 

components of the model (Figure 2I and S2A–C, Methods and Resources). For stimulated 

BMDCs, the perturbations explain 5% of the variance, 17% is explained when adding cell 

quality covariates, and up to 20% with added cell state covariates (Figure 2I). We obtain 

similar results with the other datasets (Figure S2A–C). Gene-gene correlations in the 

residuals were also significantly reduced as we added covariates (Figure 2J). We note that 

guides targeting genes have stronger and more consistent effects than a control guide (Figure 

S2I).

Perturb-seq dissects the transcriptional program in the BMDC response to LPS

To show how Perturb-Seq recovers the correct genes, processes and states regulated by TFs, 

we analyzed the effect of 24 TFs in BMDCs. ~2000 genes are induced in this response 

through the action of dozens of TFs (Amit et al., 2009b). The response is not fully 

synchronous (Shalek et al., 2013, 2014), and, moreover, cells may consist of at least two 

sub-types whose function is not fully elucidated (Helft et al., 2015).
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We cultured precursors from the bone marrow of Cas9 transgenic mice in GM-CSF (Platt et 

al., 2014a), and, after two days, infected them with a lentiviral pool targeting 24 TFs (67 

guides) and a non-targeting control. After another 7 days, we stimulated the cells with LPS, 

and collected cells for scRNA-seq at 0 and 3h (32,624 and 37,369 cells, respectively, Table 

S1). Perturbations did not strongly affect fitness (Figures S3E) or the number of transcripts/

cell (Figure S3D). Pilot experiments validated our sensitivity (80%) and specificity (90%) to 

detect – with ~100 single cells/guide – the correct genes regulated by the perturbation 

compared to bulk RNA-seq following the same perturbation (Parnas et al., 2015) (Figure 

S3F and S7I).

A simple model for stimulated BMDCs (Figures 3 and 4, Table S3, Methods and 
Resources) performed well by two basic measures: guides targeting the same gene had a 

similar impact (Figure 4A), with correlated regulatory coefficients profiles (Figure 3B, 

P<10−9, Wilcoxon signed-rank test), and guides typically repressed their direct target 

(Figure 3A, left column).

Next, we used the regulatory effects of each perturbed TF on each gene, to group TFs into 

modules by their similar regulatory effects and to group genes into programs by how they 

are affected by the perturbations. There were four TF modules (M1–M4) (Figure3A and 

4A): (M1) the anti-viral TFs Stat1 and Stat2; (M2) the pioneer factor Cebpb, with JunB, 

Rela, Stat3 and Hif1; (M3) Rel, Irf2, and Atf3; and (M4) the pioneer factor Spi1/Pu.1, with 

Runx1, Irf4, and Nfkb1. There were five gene programs, each enriched for distinct processes 

(P1–5; Figure 4A and B, Table S6): (P1) an anti-viral response; (P2) antigen presentation, 

cytoskeleton and ribosomal proteins (RP); (P3) mitochondrial function and biogenesis; (P4) 

an interferon gamma response to intracellular pathogens; and (P5) an inflammatory TNF 

response.

The TF modules regulate programs consistent with known functions. For example, Stat1 and 

Stat2 (M1) are known activators of the anti-viral program (P1) (Gao et al., 2012). The 

predicted repression of the antiviral program by M2 (Rel, Irf2, Atf3) is supported by studies 

(Labzin et al., 2015) that Atf3 is a transcriptional repressor of interferon beta and the anti-

viral response. Our prediction that Stat1 and 2 are repressors of mitochondrial biogenesis 

(P3) (Figure 4A,B) is supported by Stat1’s inhibition of mitochondrial biogenesis in mouse 

liver (Sisler et al., 2015) and Stat2 mutations in children with mitochondrial disorders 

(Shahni et al., 2015).

The model predicts the details of regulation of the anti-parasitic response genes Gbp2,2b,

3,4,5 and 7. These are all positively regulated by Stat1 and 2, and negatively regulated by 

Rel and Irf2, consistent with studies on Stat1 (Ramsauer et al., 2007) and Rel (Wei et al., 

2008). Our model also predicts that Stat2 activates Irf8 – a key TF that controls GBP 

expression (Tussiwand et al., 2012), suggesting that Stat2’s impact on GBPs may be 

mediated through Irf8. Conversely, Batf is induced by Stat2 perturbation, a possible 

compensation (Tussiwand et al., 2012).
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Opposing programs of BMDC differentiation controlled by two modules wired by positive 
and negative feedback loops

Further analysis shows that Module M2 and M4 have opposite effects on the proportion of 

cells in two mutually exclusive cell states, reflected by programs P2 and P4/5. These 

correspond to alternative cell differentiation or maturity types. The opposing functions are 

wired through multiple positive and negative loops, such that perturbing the module 

controlling one subtype switches the cells to the other.

Modules M2 and M4 had opposite effects on P2 (repressed by M2 and induced by M4) and 

P4 and P5 (induced by M2 and repressed by M4) (Figure 4A,B). P4 and P5 reflect key 

aspects of the response to LPS and pathogens. P2 is enriched for genes for antigen 

presentation, cytoskeleton proteins, and RPs, and includes key genes associated with distinct 

cell identity, especially SerpinB6 (from “cluster disrupted cells”, a sub-population that 

expresses some maturation genes even prior to stimulation (Shalek et al., 2014)) and CD86 

(DC maturation, (Cannoodt et al., 2016; Schlitzer et al., 2015)). Ribosomal, cytoskeletal and 

MHC II proteins are induced in pre-DCs, and several pre-DCs and late-pre-DC genes are 

members of P2 (e.g., lglas3, Itgax, Crip1, Cd74, H2-Ab1,H2-AA, H2-Eb1) (Cannoodt et al., 

2016; Schlitzer et al., 2015), as are Il12, Id2, Irf8, and Cd24a (whereas Zeb2 and Sirpa are in 

P4). Thus, P2 may reflect a distinct cell state or type, either less differentiated or abortive ex 
vivo.

We hypothesized that the regulatory effects on P2 and P4/5 reflect the impact of the 

perturbed TFs on the distribution of cells across possible BMDC subtypes (Methods and 
Resources). To test this, we identified seven cell clusters in 1,310 wild type LPS stimulated 

cells (Figure 3C). The clusters are significantly associated with the induction of genes from 

the five programs (P2 in cluster 2, 5, 6; P3 in cluster 1; P4/5 in clusters 0, 1, 3, 4; Figure 

S4A). Thus, induction of P2 and P4/5 represent different BMDC states, present even absent 

perturbation. Testing the association of each guide or targeted gene with each state (Figure 

3D), cells perturbed for M2 TFs (Cebpb, Rela, JunB) are enriched in clusters matching P2 
and depleted in clusters matching P5, whereas those perturbed for M4 TFs (Spi1, Irf4, 

Nfkb1, Runx1) have the opposite effect (Figure 3D).

Thus, M2 and M4 – with their distinct pioneer factors Cebpb and Spi1, respectively – have 

mutually opposing effects: M2 may promote differentiation, leading to LPS-responsive 

programs (P4 and P5), whereas M4 promotes a mutually exclusive state that is either less 

differentiated, or less productive ex vivo (P2). Both states are present in different cells 

absent genetic perturbation; the perturbations shift their proportions. The two TF modules 

are present and have the same effect even prior to LPS stimulation (Figure S3A,B and S4B, 

P1 and P3, Table S6).

Our modules self-reinforce and mutually inhibit to balance the programs. First, P2 and P5 
include as member genes their key positive and negative regulators (Figure 4B, bottom): Irf4 

from M4 is a member of P2 (positive feedback), whereas Stat3 from M2, is also in P2 
(negative feedback); Cebpb and Hif1a of M2 are members of P5 (positive feedback), but so 

is Spi1 of M4 (negative feedback). Similarly, in the antiviral program (P1), Stat1 of M1 is a 
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member (positive feedback), but so are Irf2 and Atf3 of M3 (negative feedback). Moreover, 

based on the significant transcriptional effects of the perturbed TFs on each other (Figure 

4C,D), most of the TF modules (Figure 4D, shaded areas) have internally reinforcing 

activation (e.g., Hif1a and Cebpb by each other and by JunB, Stat3, Rela (M2); Stat1 by 

Stat2 (M1); Irf4 by Nfkb1 and Runx1 (M4)), and repression between modules (e.g.. Cebpb 

and Hif1a in M2 repressed by Runx1 and Nfkb1 in M4; Rela in M4 repress Irf2 in M2; 

Stat3 and Rela in M4 repress Rel in M3).

The genetic circuit is supported by TF binding profiles

The targets our model predicted for most TFs are strongly supported by ChIP-seq data of the 

genes bound by these TFs in bulk populations (Garber et al., 2012) (Figure 4E–G, Methods 
and Resources). For example, targets bound in either unstimulated or stimulated cells by the 

constitutively bound, activating TFs Rela and Cebpb are downregulated when these TFs are 

perturbed. Targets bound at 2h post LPS by the dynamically bound activators Stat1 and Stat2 

are downregulated in perturbed BMDCs post-stimulation.

The model also correctly predicted the targets and logic of repressors (Figure 4F,G), such as 

Irf2, Atf3, and Nfkb1. Perturbing Irf2 affects its bound targets both pre- and post-

stimulation, consistent with its role as a repressor pre-bound pre-LPS (Garber et al., 2012) 

(Figure S4B). The targets bound by Atf3 and preferentially induced by its perturbation are 

enriched for anti-viral genes (P<10−5), supporting it as a repressor of the antiviral response. 

Nfkb1 (encoding p50) is predicted by the model to act as a repressor for its bound targets, 

suggesting that its perturbation affected a p50-p50 repressor homodimer (Elsharkawy et al., 

2010), more than a p50-p65(Rela) activator heterodimer post LPS.

The TF binding patterns also support their direct regulation of P1, P4 and P5 (Figure 4A,B, 

green/white heatmap). Genes bound by M1 TFs are enriched in P1 and P4 (positively 

regulated by M1); genes bound by the repressors Atf3 and Irf2 (M3) are enriched in P1 
(negatively regulated by M3); genes bound by Atf3 are also enriched in P4 (including IL-6 

(Gilchrist et al., 2006)); Stat3- and Rela- (M2) bound genes are enriched in P4, and Cebpb 

bound genes are enriched in P5 (both positively regulated by M2). Bound targets of M4 TFs 

(Irf4, Runx1, Nfkb1) are enriched in P4, and Nfkb1 targets are also weakly enriched in its 

repressed target program P5. The remaining two programs do not show such enrichments for 

bound TF targets (Figure S4C), e.g., suggesting that Stat1 and 2 regulate P2 indirectly, 

perhaps through mitochondrial signaling (Meier and Larner, 2014).

TF-specific programs revealed once accounting for global effects

Global effects on cell states may mask other specific effects of a TF within cells in a given 

state. To recover those, we added the assignment of the perturbed cells into the seven states 

(Figure 3C, Table S2) as covariates. Following this, guides targeting the same TF grouped 

particularly tightly (Figure 3E–F compared to A–B). The model showed that MHCII genes 

are positively regulated by Runx1 and Ctcf, and negatively regulated by Rel (Figure S4D, 

Table S6), and a strong repression of the IFNγ response by Irf2. The two models are 

complementary: one emphasized global effects; the other uncovers TF specific effects.
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Genetic interactions affect gene expression and global cell states

To dissect how the effects of multiple TFs combine, we analyzed cells containing more than 

one guide after strict filtering of GBCs (Figure 1D, S1E, and 5). First, in many cases pairs, 

and even triplets of TFs affected in a non-additive way the probability that a cell assumes 

one of the seven cell states (Figure 5B). For example, cells containing GBCs for all three of 

Maff, Rel, and Stat2 have a lower probability of being in cell state 3 than expected by their 

individual and pair-wise effects (Figure 5C).

Next, we assessed the effect of genetic interactions on the expression of each gene using our 

model with interaction terms (Figure 5A, Methods and Resources). For each pair of 

perturbed TFs, we assessed the relative proportion of target genes where their relation is 

additive (no interaction), synergistic, buffering (antagonistic), or dominant (when the two 

factors have opposing effects, and the interaction term enhances one of them) (Figure 5D,E). 

Most TF pairs involving one of Runx1, Irf1, Irf2, or Irf4 had mostly additive effects, 

whereas pairs with combinations of Stat1, Stat2, Stat3, Rela, Nfkb1 and Spi1 were enriched 

for interactions. Only those involving Nfkb1 (Stat1-Nfkb1, Stat3-Nfkb1, Rela-Nfkb1, Spi1-

Nfkb1) were enriched for buffering interactions (Figure 5E).

Finally, we related the different categories of interactions to TF binding, illustrated for 

Nfkb1 and Rela (Figure 5F). Individually, Nfkb1 and Rela have opposing effects on the 

genes in P4 and P5: Nfkb1 as a repressor, and Rela as an activator. These target genes are 

partitioned in two by the model with genetic interaction (Figure 5F, hatched boxes): in one 

subset, the joint perturbation of Rela and Nfkb1 is additive (no interaction), whereas in the 

other there is a dominant interaction (of Nfkb1 over Rela). Both sets belong to the same 

programs (Figure 5F, hatched boxes), and both are enriched for ChIP targets of both Nfkb1 

and Rela (Figure 5F, right), but only the set with the dominant interaction is enriched for co-
binding (Figure 5F, right). Similar cases, where genetic interactions are present only when 

the two factors are co-bound, are found for additional pairs (e.g., Runx1-Rel, Irf4-Nfkb1).

Global transcriptional modules and specific TF effects in K562 cells

To test the generality of our approach, we performed Perturb-seq targeting 10 TFs in K562 

cells, a rapidly proliferating cell line (Figure 6, S5 and S6, Table S4). Fitting a linear model 

without cell state covariates, the TFs partition into two modules (Figure 6A and S6B). 

Guides to the same gene were correlated in their effects, both within and across experiments 

of different durations (Figure 6E and S6B).

We defined nine cell states by clustering of WT cells (Figure S6G), and found specific 

perturbations enriched in individual states (Figure 6C), consistent with known functions of 

the perturbed genes. For example, cells perturbed in EGR1 are depleted from cell state 6, 

which has an increased expression of hemoglobin biosynthesis genes, consistent with 

EGR1’s known role (Sripichai et al., 2009). Cells perturbed in YY1 are enriched in state 5 

(induction of cholestrerol biosynthesis genes), consistent with its known role as a repressor 

of this process (Villagra et al., 2007).

Next, we fitted a model that accounted for cell states. Because these states are likely 

continuous (e.g., cell cycle phase) rather than discrete types, we performed PCA on WT 
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K562 cells, scored the cells from the Perturb-seq experiment against those PC scores, and 

introduced the state PC scores as covariates. In the resulting model (Figure 6B), individual 

guides to the same gene are more consistent in their effects, especially across experiments 

and durations (Figure 6E), suggesting that TF-specific effects are reproducible even if cell 

state proportions change over time.

The model correctly predicts individual TF functions. For example, GABPA perturbation 

represses mitochondrial functions (P < 10−8, Figure S6C, Table S6), consistent with its 

known role (Yang et al., 2014). YY1 perturbation is correctly (Goffart and Wiesner, 2003) 

predicted to represses oxidative phosphorylation (P<10−10) and induce an innate immune 

response (P<10−10), and is enriched for its ChIP-seq targets (Guo and Gifford, 2015)).

Perturbations of cell cycle regulators reveal distinct profiles associated with similar fitness 
effects and mitotic arrest

Individual cells in a rapidly dividing cell line vary in their cell cycle state, readily observed 

by scRNA-seq (Buettner et al., 2015; Macosko et al., 2015). Cell cycle phenotypes can be 

screened by morphology or markers, but two genes with the same phenotypic effect may act 

through different mechanisms. To address this, we targeted in K562 cells 13 genes (33 

guides) (Table S1) that were previously identified by a mitotic arrest phenotype in a 

genome-wide imaging screen in HeLa cells (Figure S6D, from (Neumann et al., 2010)).

Determining the fitness effects of each perturbation (Methods and Resources), we found a 

strong proliferative advantage conferred by perturbing PTGER2, CABP7 and CIT, and a 

disadvantage when perturbing AURKA, TOR1AIP1, and RACGAP1 (Figure S6H). (Among 

K562 TFs, perturbing EGR1 had a disadvantage; Figure S6A.) Furthermore, supervised 

analysis using signature gene sets for cell cycle phases (Macosko et al., 2015) showed that 

perturbations of AURKA and TOR1AIP1 (both decrease fitness) are associated with an 

increase in G2/M and M signatures (Figure 6F). Perturbation of CABP7 (increases fitness) 

has an opposite effect: decrease in G2/M and M signatures and increase in the M/G1 

signature (Figure 6F). Perturbation of CIT increases G1/S and S states, a different cell cycle 

route manifested as increased fitness (Figure 6F).

Our model (Figure S6E, Table S5 and S6) shows that distinct processes are affected by 

factors with positive and negative fitness effects, but also highlights two different routes 

underlying increased fitness. Perturbation of CABP7 strongly induced a program of 

mitochondrial respiration and biogenesis (P < 10−10), NFkB signaling (P < 10−5), and 

mitotic division (P < 10−8), consistent with the fitness advantage. Perturbation of CIT and 

PTGER2 (also increased fitness) repressed these programs but induced the expression of 

other genes, especially 11 histone genes induced by CIT. The overall partitioning of factors 

by their regulatory effects (Figure S6E) mostly followed their groupings by morphology in 

HeLa cells (Figure S6D, (Neumann et al., 2010)): (1) CIT, PTGER2 and RACGAP1 

(binuclear phenotype); (2) CENPE and ARHGEF17 (grape-like phenotype and mitotic 

delay); and (3) Aurora kinases A, B, and C (proliferation and migration defects). An 

exception is CABP7, which, despite a similar binuclear phenotype to that of CIT, PTGER2 

and RACGAP1, has a distinct transcriptional phenotype (Figure S6E, above).
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A guide to the miserly: effects on gene signatures are robust to downsampling of cells and 
reads

The regulatory coefficients associated with our perturbations are highly structured (Figure 

3–6), with sets of targets similarly affected across sets of perturbations, consistent with 

modular gene regulation (Heimberg et al., 2016; Kemmeren et al., 2014). Thus, recovery of 

effects on gene signatures– e.g., guides that affect the antiviral response – should be 

achieved even with low numbers of cells and reads.

We quantified our ability to detect gene level regulation vs. signature or state level regulation 

(data-driven clusters or known gene sets), when we down-sample cells and reads/cell (Figure 

7 and S7, Methods and Resources). The number of cells and reads required for signature 

level effects is lower than that needed to detect effects on individual genes (10’s vs. 100–200 

cells/perturbation; 400 vs. 1,000 transcripts, Figure 7A,B and S7B–H, J–L). These estimates 

provide helpful guidelines for future Perturb-seq applications.

To support the feasibility of large Perturb-seq screens, we also demonstrated that all steps in 

Perturb-seq could be performed in a single pool (Figure S5). We synthesized an array of 

sgRNAs targeting 7 chromatin regulators and 5 intergenic controls, and performed pooled 

cloning, virus preparation, transduction, cell growth, scRNA-seq (14,000 cells), and model 

fitting. Guides to the same gene agreed well (P<10−3). Early pooling may cause 

recombination in lentivirus, but allows large screens with appropriate strategies (Adamson et 

al., 2016).

DISCUSSION

We developed Perturb-seq, a method to analyze the transcriptional effect associated with 

genetic manipulations on genes, processes, and states. Perturb-seq decreases the time and 

cost associated with assaying the complex effects of large numbers of perturbations, 

including combinations.

Future enhancements of precision and facility

An important advantage of using Perturb-seq is that higher order interactions can be assayed 

without further need to generate complex reagents. Due to the Poisson loading of 

perturbation per cell, the same experiment used for a single perturbation can also uncover 

the genetic interactions between the perturbed genes. Future work could leverage the ability 

of Cpf1 to autonomously process an entire array, and deliver several sgRNAs (or an 

unprocessed array) on one construct (Zetsche et al., 2016).

Current and future scale of Perturb-seq

At its current scale, Perturb-seq can be readily applied for targeted screens of a subset of 

genes of interest and their interactions (Figure 7C), as we have done here. In some systems, 

growth or marker-based screens may first be performed to identify this subset prior to 

Perturb-seq (as in (Adamson et al., 2016)). Perturb-seq will scale as both the cost of 

sequencing and of scRNA-seq decreases (Figure 7C).
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By varying the number of surveyed cells and the sequencing depth, screens can be adjusted 

to focus on cell states and signatures or on effects on individual genes. Our analysis suggests 

that a broad survey of transcriptional phenotypes across thousands of perturbations can be 

performed with as few as 10 cells per perturbation (Figure 7B).

Genome-wide or large combinatorial screens will also require increased computational 

bandwidth. MIMOSCA (Figure S2H) is designed foreseeing screens with millions of cells, 

with fast, scalable, and parallelizable algorithms. It is publically available with worked 

examples (https://github.com/asncd/MIMOSCA).

Challenges and opportunities for understanding the vast space of possible genetic 
interactions

As we showed, Perturb-seq can in principle dissect higher order effects (Figure 5C), but 

systematic analysis of genetic interactions remains an ambitious goal. First, both the 

probability of detecting all perturbations and the probability of all perturbations resulting in 

an effect scale exponentially with the order of perturbations (Figure S7A). Our inference 

framework (Figure 2) and future improvements can help deconvolve mixtures of knockouts, 

and is potentially scalable to higher order interactions. However, while Perturb-seq 

significantly reduces time and cost, these still scale linearly with the number of perturbations 

assayed, whereas the size of combination space grows exponentially as the order of 

combinations grows.

We hypothesize that a plausible alternative strategy exists, combining substantial under-

sampling of this vast space with appropriate analytics (Beerenwinkel et al., 2007; Du and 

Hwang, 2000; Weinberger, 1991) that make inference possible even when the number of 

possible combinations is much larger than the number of samples. We are motivated by two 

biological assumptions: (1) modularity(Costanzo et al., 2016; Ihmels et al., 2002), as we 

have shown for both the perturbations and the gene targets; and (2) sparsity, such that the 

majority of gene pairs (or higher order combinations) do not manifest genetic interactions 

(supported by fitness studies of genetic interactions in yeast (Costanzo et al., 2016)). If 

sparsity holds for expression phenotypes, a subset of experiments can be performed, in 

which most cells receive a relatively large number of perturbations (e.g., 5) and we infer 

both partially observed and even entirely unobserved interactions at a lower order effects 

(e.g., 2 or 3). Perturb-seq was designed with such future studies, which will leverage group 

structure in perturbations and their interactions, in mind.

A general framework to combine rich readout with cellular metadata

Other CRISPR-based perturbations are readily compatible with Perturb-seq, including 

CRISPRi as in our companion study (Adamson et al., 2016), CRISPRa, and alternative 

editors (e.g., Cpf1). Expressed barcodes can also be used to mark cells derived from a 

common ancestor for the purposes of lineage tracing (Figure 7D). Other measurement 

platforms, such as multiplex PCR (Fan et al., 2015) or multiplex protein measurements (Frei 

et al., 2016) can help focus on a subset of target transcripts or proteins, respectively. It 

should also be possible to apply Perturb-Seq in vivo, or in co-cultures of perturbed cells in 

droplets, merging them with scRNA-seq.
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We hope that the experiments and analysis provided here and in (Adamson et al., 2016) will 

be starting points for future experiments that combine scRNA-seq and pooled screens. These 

will bridge the gap between genetic screening and molecular follow up experiments, and 

will facilitate causal studies of how specific genotypes lead to phenotypes.

METHODS AND RESOURCES

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to the Lead 

Contact: Aviv Regev, aregev@broadinstitute.org.

Experimental Model and Subject Details

Cas9 transgenic mouse—For all BMDC experiments, we derived cells (as described 

below) from six- to eight-week old constitutive Cas9-expressing female mice, from the 

transgenic mice we described previously (Platt et al., 2014b), and that are also available 

from the Jackson labs. All animal protocols were reviewed and approved by the MIT / 

Whitehead Institute / Broad Institute Committee on Animal Care (CAC protocol 

0609-058-12) and all experiments conformed to the relevant regulatory standards.

Bone marrow derived dendritic cells—To obtain a sufficient number of cells, we 

implemented a modified version of the DCs isolation protocol as previously described (Amit 

et al., 2009b; Chevrier et al., 2011; Garber et al., 2012; Lutz et al., 1999; Rabani et al., 

2011). RPMI medium (Invitrogen) supplemented with 10% heat inactivated FBS 

(Invitrogen), β-mercaptoethanol (50µM, Invitrogen), L-glutamine (2mM, VWR), penicillin/

streptomycin (100U/ml, VWR), MEM non-essential amino acids (1X, VWR), HEPES 

(10mM, VWR), sodium pyruvate (1mM, VWR), and GM-CSF (20 ng/ml; Peprotech) was 

used throughout the study. At day 0, cells were collected from femora and tibiae and plated 

in 100mm non tissue culture treated plastic dishes using 10ml medium per plate at 

concentration of 2 × 105/ml. At day 2, cells were fed with another 10ml of medium per dish. 

At day 5, 12ml of the medium were carefully removed (to avoid removal of cells) and 10ml 

of fresh medium were added back to the original dish. Cells were fed with another 5ml 

medium at day 7. At day 8, all non-adherent and loosely bound cells were collected and 

harvested by centrifugation. Cells were then re-suspended with medium, plated at a 

concentration of 10×106 cells in 10ml medium per 100mm dish. At day 9, cells were 

stimulated with LPS (100ng/ml, rough, ultrapure E. coli K12 strain, Invitrogen) and 

harvested. Cells were always plated at concentration of 2 × 105/ml at day 0. Cells were 

harvested post stimulation after 0hr or 3hr and cells from cultures that contained 10% BFP 

positive cells were sorted for BFP+ and GFP+ (contain CAS9).

K562 cell cultures—We used transgenic K562 cells constitutively expressing Cas9 (Wang 

et al., 2015). K562 cells were transduced using several titers of virus and cells where spin 

infected in 2,000 rpm for 30 min. For the low MOI experiment we used cultures that 

contained 10% BFP+ and for the high MOI 50% BFP+. Cells were grown in RPMI Medium 

1640 + GlutaMAX (ThermoFisher) + 10% heat inactivated FBS (Invitrogen). Cells were 

grown to a confluence of 30–60% and spun down at 300× g for 5 min. The supernatant was 
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removed, and cells were suspended in 5 mL of 1× PBS + 0.2% BSA (Sigma cat #A8806) for 

sorting: BFP+ and GFP+ (CAS9 expressing) cells were sorted. Cells were harvested for 

library preparation 7 days post transduction for most experiments and 13 days post 

transduction for the second time point of the TF pool experiment.

After sorting BFP+ GFP+ cells passed through a 40-micron cell strainer (Falcon, VWR cat 

#21008-949), wash twice and counted.

Method Details

Construction of lenti-vector and transduction—A lentivirus backbone was 

constructed containing: antiparallel cassettes of a mouse U6 promoter for sgRNA and EF1α 
promoter for expression of puromycin, BFP and a polyadenylated GBC cassette (same 

vector here and in Adamson et al., 2016). The vector was digested using BlpI and BstXI and 

annealed oligonucleotides, encoding sgRNAs, were ligated in an arrayed format. 

Association between GBCs and sgRNAs was determined using Sanger sequencing to 

generate a sgRNA/GBC dictionary. sgRNAs for BMDCs were designed using published 

methods for the BMDCs (Doench et al., 2014) and the K562 guides were deigned by a 

preexisting library’s design (Wang et al., 2015). Plasmids were pooled together prior to 

lentivirus preparation.

Cloning of array-synthesized guide pools—We also devised, for proof-of-concept 

experiments, a two-step cloning procedure to enable cloning to be performed in a pool 

followed by next generation sequencing to create the sgRNA/GBC dictionary, as in Figure 

S5A.

Vector backbone compatible with pooled cloning: We assembled sgPS, a lentiviral vector 

similar to the one described above (Figure 1B) containing antiparallel cassettes of a human 

U6 promoter for sgRNA expression and a high-diversity library of GBCs. However, in place 

of the EF1α-Puro-T2A-BFP cassette, we inserted a NotI site so the sgRNA and its GBC are 

close enough to be associated through next generation sequencing.

sgRNA library cloning: We synthesized an oligo pool corresponding to several sgRNA 

libraries with PCR tags (purchased from CustomArray, Bothell, WA):

GGCCAGTGAGCTCGACAAGTTTCAGtatcttgtggaaaggacgaaacaccGNNNNNNNNNNNN

NNNNNNNNgtttaagagctatgctggaaacagcatagGGGTGGTTAGTGATTTGCCCGTCAC

(Ns denote guide RNA sequence, uppercase denotes subpool specific PCR handles, 

lowercase denotes PCR handles for GuidePool Fwd/Rev)

We enriched for the desired sub-pool of oligonucleotides by PCR using sub-pool-specific 

primers (SubpoolAmp Fwd/Rev) and purified the product using a 2× volume of AMPure XP 

SPRI beads (Beckman Coulter, Danvers, MA). We then added homology arms for Gibson 

assembly by performing PCR with primers GuidePool Fwd/Rev and purified the product 

with 1× SPRI beads.
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We prepared the vector backbone by digesting sgPS with BsmBI (New England Biolabs 

(NEB), Ipswich, MA) followed by purification with 0.75× AMPure XP SPRI beads. We 

assembled 70 ng amplified library into 500 ng digested vector in a 50 µL Gibson reaction 

(NEB), cleaned it with 0.75× AMPure XP SPRI, eluted in 15 µL H2O and electroporated the 

entire volume into Endura competent cells (Lucigen, Middleton, WI). We expanded the cells 

in liquid culture for 18 hours at 30°C.

Next generation sequencing to create sgRNA/GBC dictionary: We generated a paired-

end Illumina sequencing library, where read1 corresponded to the sgRNA and read2 

corresponded to the GBC by PCR amplifying the intermediate plasmid pool with custom 

primers containing Illumina sequencing adaptors and sequenced them to an average depth of 

>100 reads per GBC with an Illumina MiSeq.

Insertion of EF1α-Puro-T2A-BFP cassette: We amplified the EF1α-Puro-T2A-BFP 

cassette from the vector described above (Figure 1B) by PCR with primers to add Gibson 

arms compatible for cloning into the NotI-digested intermediate pool. We assembled 300 ng 

of the amplified cassette into 300 ng of a digested intermediate pool in a 20 µL Gibson 

reaction (NEB), cleaned it with 0.75× AMPure XP SPRI, eluted in 15 µL H2O and 

electroporated the entire volume into Endura competent cells (Lucigen). We expanded the 

cells in liquid culture for 18 hours at 30°C and purified the pooled library plasmid with the 

Endotoxin-Free Plasmid Maxiprep Kit (Qiagen, Hilden, Germany).

Name Sequence Note

SubpoolAmp_Fwd GGCCAGTGAGCTCGACAAGTTTCAG

SubpoolAmp_Rev GTGACGGGCAAATCACTAACCACCC

GuidePoolAmp_Fwd GGCTTTATATATCTTGTGGAAAGGACGAAACACCG

GuidePoolAmp_Rev CTTATTTAAACTTGCTATGCTGTTTCCAGCATAGCTCTTAAAC

IlluminaPoolSeq_Fwd AATGATACGGCGACCACCGAGATCTACA NNNN
CGATTTCTTGGCTTTATATATCTTGTGG

Ns denote sequencing
barcode

IlluminaPoolSeq_Rev CAAGCAGAAGACGGCATACGAGAT NNNNNNNN
ACAGTCGAGGCTGATCAGC

Ns denote sequencing
barcode

CustomRead1 Primer CAAGCAGAAGACGGCATACGAGAT NNNNNNNN
ACAGTCGAGGCTGATCAGC

CustomRead3 Primer CGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG

CustomIndex Primer GCTGATCAGCGGGTTTAAACGGGCCCTCTAGG

CassetteAmp_Fwd CCCGTTTAAACCCGCTGATCAGCCTCGACTGT

CassetteAmp_Rev TCGCCAGGGTTTTCCCAGTCACGACGCTTAATTAAGCTTGTGCCCCAGT

Lentivirus was made using 293T cells transfected with lentiGuide-Puro, psPAX2 (Addgene 

12260), and pMD2.G (Addgene 12259) at a 10:10:1 ratio, using Lipofectamine LTX and 

additional reagents according to the manufacturer’s instructions.

Single cell library preparation—In our current implementation, we rely on a droplet 

method, which is now commercially available (Zheng et al., 2016), but our design is 
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compatible with additional single-cell RNA-seq methods (Fan et al., 2015; Klein et al., 

2015), and we have tested it successfully with Drop-Seq (Macosko et al., 2015) in both 

K562 cells and BMDCs, albeit with different gene targets than in the rest of this study (AD, 

OP, BL, and AR, unpublished data).

Prior to analysis, cells were diluted to the final concentration in 1× PBS + 200 µg/mL BSA 

(NEB, cat # B9000S). Sorted cells (BMDCs or K562 cells) were loaded on the 10× 

Chromium system (Zheng et al., 2016) (8,000 cells/channel) and single cell RNA-seq 

libraries were generated following the manufacturer’s instructions.

Following WTA, a fraction of the WTA was used to amplify GBCs using a dial-out PCR 

strategy with the primer sequences below (the full primer sequence is a concatenation of the 

columns). The template material was approximately 5ng of WTA libraries. 25 cycles of PCR 

were performed using one of the dial-out primers below with the P7 Illumina reverse primer.

Primer sequences:

P5 Barcode R1 Primer (BFP location of 
pBA439)

AATGATACGGCGACCACCGAGATCTACAC NNNNNNNN TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC TCGCCTTA TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC CTAGTACG TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC TTCTGCCT TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC GCTCAGGA TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC CATGCCTA TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TAGCAAACTGGGGCACAAGC

AATGATACGGCGACCACCGAGATCTACAC GTAGAGAG TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TAGCAAACTGGGGCACAAGC

P7 Ilumina Reverse Primer:

CAAGCAGAAGACGGCATACGAGAT

We used the following PCR protocol:

1 rxn

Q5 2X master mix 25

P7 primer @10uM 1.25

pBA439_rev @ 10uM 1.25

Template (5ng total) x

water (qs up to final rxn of 50ul) y

Total 50
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Temp time

98 C 10s

98 C 2s

repeat 65 C 5s for 25 cycles65 C 5s

72 C 10s

72 C 1 min

The resulting PCR product was run on a 2% Agarose gel, the appropriate band was 

extracted, and next-generation Illumina sequencing was performed using NextSeq.

Quantification and Statistical Analysis

Read alignment and generation of expression matrix—A digital expression matrix 

was obtained for each experiment using 10X’s CellRanger pipeline with default parameters. 

Their pipeline uses STAR for alignment. All subsequence analysis information is also 

available and maintained in current form in the following Git repository https://github.com/

asncd/MIMOSCA.

Alignment of cell barcode / GBC libraries—To associate cell barcodes with guides, 

the sgRNA/GBC dictionary generated by either Sanger or NGS was used. Paired-end reads 

containing a cell barcode and UMIs on one side and GBC barcode on the other side were 

isolated and collapsed into unique molecules by first demultiplexing a sequencing run using 

bcl2fastq2 with the following options --create-fastq-for-index-reads --barcode-mismatches 1 
--no-lane-splitting --mask-short-adapter- reads 5 --minimum-trimmed-read-length 5 using a 

sample-sheet containing one line with polyG tracts in the index read columns (see below). 

The resulting Undetermined fastq files were split using kentools into two folders called 

split1 and split2 containing chunked R1 and R2 reads respectively.

Sample
_ID

Sample_Name I7_Index_ID index I5_Index_ID index2

1 placeholder silly1 GGGGGGGGGGGGGG silly2 GGGGGGGG

The reads were then concatenated and GBC reads isolated using the following constant 

sequence within the GBC transcript: GGCACAAGCTTAATTAAGAATT.

All split files containing a particular index barcode were finally concatenated and collapsed 

to unique molecules using the following command.

cat *${inputbc}.txt | sort | uniq −c | sort −k1,1g | awk '{print $1"\t"$2"\t"$3"–"$4}' the result 

file format looks as follows (grey highlighting for actual barcode portion of GBC read):
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279 1:N:0:GGTGATACCTCATT+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCGATCAACGCAGAGACGGCCTAG

282 1:N:0:TCGAGCCTTATGGC+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTGCTTGACTCGTTAGCGAGCCTAG

286 1:N:0:ACTCGAGAGTTCGA+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCGATCAACGCAGAGACGGCCTAG

294 1:N:0:GCACGTCTACTAGC+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCTAACTCAGCGACTGGAGCCTAG

297 1:N:0:ATAGATTGTCCGAA+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTGCTTGACTCGTTAGCGAGCCTAG

299 1:N:0:GAGCAGGAGCTATG+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTAAACCCTCACTGCCGACGCCTAG

333 1:N:0:GGAGGCCTGTTACG+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTAGGGCTTGCAGTGCACGGCCTAG

339 1:N:0:CGACTCACGTTCAG+TCGCATAA CGCAAACTGGGGCACAAGCTTAATTAAGAATTCGATCAACGCAGAGACGGCCTAG

Counts 1:N:0:Cellbarcode+Index/SampleBarcode GBCread-UMI

The resulting file along with the preassociated GBC and sgRNA dictionary was parsed using 

a custom Python script to create a new table of probability estimates of which sgRNA are 

present in each cell. The probability estimate is thresholded to create a dictionary of which 

cell barcodes contain which sgRNAs (Figure S1F).

For strict filtering, chimeric reads were removed by thresholding molecules that, for a given 

unique combination of cell barcode and UMI, received less that 20% of the reads.

See https://github.com/asncd/MIMOSCA for more on filtering chimeric reads.

Fit of distribution of guides per cell—We simultaneously fit a generative model of the 

number of guides per cell and the detection probability of observing a guide if a cell 

contains it using a maximum likelihood approach.

To approximate our probability of GBC detection, we considered two factors: (1) the initial 

MOI and (2) the technical transcript capture efficiency of the library preparation protocol. A 

third factor, the fitness effects of each of the guides, was not considered. We reasoned that 

for both our BMDCs TFs and K562 TFs pools our guides generally did not have strong 

fitness effects since their final representation correlated strongly with their initial abundance 

(Figure S3E,F and S6A). While fitness effects due to having multiple guides can create a 

skewed distribution, we noted a consistent distribution between the two time points in our 

K562 TF pool (separated by seven days of cell culture, Figure 6E,F).

We reasoned that these should be described well by a generative model, where we assume a 

zero-truncated Poisson distribution for infection with a guide-carrying lentivirus (zeros are 

truncated by BFP+ selection), convolved with a binomial process (for the probability of 

detection). Specifically we determined the maximum of the log likelihood by varying the 

two parameters: α, the detection probability and λ, the estimate of the initial MOI. The log-

likelihood is evaluated as:
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Where O(k) is the number of cells with k guides detected. A “birthday problem” correction 

could be applied to account for the probability the same guide was present more than once in 

a cell, but this did not appear to significantly change our MOI or detection probability 

estimates (while more problematic for higher MOIs and low complexity libraries, this will 

not be an issue for high complexity libraries).

Determination of on-target effect—To assess the extent to which our observed 

reduction in on-target expression was significant, we performed a one-sample t-test to 

determine if the mean of our observed data was significantly less than zero. We also 

permuted the assignments between GBCs and cells and obtained a distribution of permuted 

means and compared to our observed means from which we calculated a permutation p-

value (as in Figure 1E).

Linear model—To fit the linear model we compiled our covariate matrix X and our 

expression matrix (or one of the continuous covariates; as done for some assignments of cell 

states; below) as our matrix Y. Using the elastic net regularization (Zou and Hastie, 2005) 

through the Python implementation with the following parameters, to fit our model.

sklearn.linear_model.ElasticNet(l1_ratio=0.5,alpha=0.0005,max_iter=10000)

The two regularization parameters were determined through cross-validation.

Alternating descent fit of perturbation probability—An overview of the problem, 

proofs that bound error for related approaches under specific assumptions, and useful 

citations can be found in (Loh and Wainwright, 2012).

To account for the contribution of unperturbed cells in the population containing a particular 

sgRNA, we constructed an approach in which the presence of sgRNA in a given cell was 

converted into a probability measure of that sgRNA having a phenotypic effect on the cell, 

as follows:

We note that by Bayes’ rule, the probability of being in a particular class of a two class 

outcome can be written as:

The derived equation is effectively a logistic transform of the log likelihood.

For a single output (y) that could belong to one of two possible Gaussian distributed classes, 

the log likelihood can be written as follows:

Dixit et al. Page 19

Cell. Author manuscript; available in PMC 2017 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on the derivations above, we fit using the multivariate regression on Y=X with Ŷ = 

Xβ

Next, we evaluate the fit with the guide covariate set to 0, Xo

Finally, we use the new covariate matrix XM whose entries consist of P(Xj = 1) = 1 to 

recompute βM.

Significance testing for coefficients of linear model—We devised a permutation 

strategy to empirically obtain a null distribution of the coefficients associated with our 

sgRNA effects. Specifically, we randomized the guide assignments to cells (such that co-

occurrence between guides was preserved) and the linear model was recomputed with all 

other covariates being held constant. We repeated this ten times. We noticed that three 

significant as-yet latent factors impacted the empirical null distribution of coefficients: (1) 

the mean expression level of a gene; (2) the variance in expression of a gene; and (3) the 

number of cells a particular sgRNA was present in.

To control for these factors when assessing significance, each empirical null coefficient’s 

value was assigned a point in 4-space: [Gene mean, gene variance, number of cells, value]. 

We then estimated the multivariate density using a binning approach (np.histogramdd in 

Python). True nonzero coefficients were evaluated for significance relative to a matched set 

of bins (to create an empirical conditional cumulative probability distribution) conditioned 

on the first three factors.

A less stringent null was generated by obtaining a permuted distribution of coefficients 

based on a permuted cell-to-guide assignment, but only calculating the significance on a per 

guide basis without consideration of the mean expression level or variance of the gene being 

considered.

In both cases, we used a Benjamini-Hochberg procedure to control for multiple hypothesis 

testing.

Residuals analysis—To determine the marginal effect of each covariate in explaining the 

observed gene expression variation, we estimated the model R2 by cross-validated (trained 

on 80% of the data and tested against 20%) for the addition of each of the covariates.

To determine the extent to which our covariates explained the major axes of variation in our 

data, we decomposed the residuals using the same randomized PCA approach described in 

the Definition of Cell States section. Two major metrics were evaluated: (1) the eigenvalue 

distribution, and (2) the extent to which the top loadings were enriched for biological terms. 

This analysis is relevant for Figure 2J.
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Cross validated R2—To estimate the generalizability of the model, we determined a 

cross-validated R2 by training our model on 80% of our data and determining the fit on the 

remaining 20%. This analysis is relevant to Figure 2I, and S2A–C.

Definition of cell states—Cell states were defined using parallel experiments with cells 

that did not have sgRNAs introduced. Starting from an expression matrix Y, variable genes 

were selected based on fitting a nonparametric Loess regression (using a moving window of 

25 percent of the data) to the relationship between the average expression of a gene and its 

respective coefficient of variation (after normalizing each cell for complexity). Genes with 

high residuals (i.e., more variable than genes at comparable expression levels) were selected 

(approximately 1,000 genes).

Next, the expression matrix was normalized per cell (the sum of the number of transcripts 

for each cell is renormalized to 10,000), log2 transformed with a pseudocount of 1 and the 

genes were Z-transformed. Randomized PCA was performed on the Z transformed 

expression matrix using Facebook’s implementation through the python package fbpca 
retaining the top 50 components.

A combination of the elbow method looking at the eigenvalue gap of each component, GO 

enrichment of each component using jackstraw (Chung and Storey, 2015) and a PC 

robustness analysis (in which increasing amounts of random noise is added to the data and 

the stability of each principal component with respect to the original components is 

evaluated) was used to determine the number of principal components to retain (which in 

general was approximately 10).

Clustering was performed using Infomap (Rosvall and Bergstrom, 2008) with k refined so 

that slightly more clusters are created than one would expect. Clusters are subsequently 

merged in an iterative fashion such that no pairwise comparisons between clusters have 

fewer than 100 differentially expressed genes (Shekhar et al., 2016). Differential expression 

is evaluated using a Welch’s t-test (adjusted for unequal variance) on the Z-transformed 

values between each cluster and the rest of the cells. A Benjamini-Hochberg FDR procedure 

(Benjamini and Hochberg, 1995) was used to control for multiple hypothesis testing. The 

clusters are evaluated for GO enrichment using FDR corrected p-values (see Interpretation 
of Results).

Relation of perturbed cells to unperturbed states—To define the relationship 

between the cell states in the unperturbed cells and the perturbed cells, we projected the 

perturbed cells onto the same significant principal component vectors derived from the 

unperturbed cells. The projection onto these components was used as a covariate by itself, 

especially with K562 cells, where the major axes of variation, such as cell cycle, describe 

more continuous processes. For BMDCs, discrete cell types are readily discernable. There, 

we trained a random forest classifier using class labels obtained by the merged Infomap 

clusters with features consisting of PC scores.
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We used the out-of-bag probability estimates to generate ROC curves to determine the 

sensitivity and specificity of classification per cluster. Finally, the random forest was applied 

to the projected PC scores of the perturbed cells to obtain class membership predictions.

Tests of sgRNA effect on outputs other than gene expression—To evaluate the 

effect of an sgRNA on an output such as number genes detected, transcripts detected, or cell 

state, our regression framework is modified to predict these outputs instead of gene 

expression. The major modification is that the L1 sparsity-inducing penalty is removed, 

resulting in ridge regression.

Fitness effects of sgRNAs—To assess the fitness effects of sgRNAs we obtained 

estimates of the initial abundances of each sgRNA in the pool. The initial abundance of each 

plasmid in the pool was quantified using NGS of the GBC. The GBC / sgRNA dictionary 

was used to convert the readout into a relative abundance estimate of sgRNA in the initial 

pool. Then, we calculated the fold change of the observed abundance of cells containing a 

particular sgRNA compared to its respective abundance in the original pool. This analysis is 

relevant to Figure S3E, S6A, and S6H.

To quantify the significance of these fold changes we developed a Bayesian probabilistic 

model that computes the expected probability of each guide in the resulting cell population. 

The model is based on the null hypothesis that the fitness effects of gene targeting guides is 

equivalent to the fitness effects of non-targeting or intergenic guides. Let M, d, fg, and dg,c 

denote the MOI, the overall guide detection rate, the frequency of guide g in the initial 

library, and the event of detecting guide g in cell c, respectively. We model the infection with 

guide g as a Poisson(fg · M). To avoid effects of genetic interactions we compute the 

expected probability of each guide given that the cell was infected only with one guide and 

survived BFP selection.

We then examine if the observed frequency of each guide in the pertaining cell 

subpopulation deviates from the expected frequency, compute a binomial p-value, correct for 

multiple hypotheses via Bonferroni correction, and report the significant findings.

Analysis of perturbation effects on individual genes and gene modules—The 

most variable genes from all each Perturb-Seq experiment were filtered by using the 

jackstraw approach (Chung and Storey, 2015) to identify the most significant genes (q-value 

< 0.01) in the top 20 PCs of the coefficient matrix. The genes were then clustered using k-

means clustering by their coefficients. Optimal k was chosen by visual inspection of 
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clustering results. Gene ontology (GO) enrichment analysis was performed on each cluster 

using goatools (Tang et al., 2015) with FDR threshold of 0.05.

Comparison to ChIP-seq binding profiles—We analyzed assignments of TF binding 

in gene promoters in BMDCs following LPS stimulation across four time points (0, 30, 60, 

and 120 minutes) (Garber et al., 2012). To test for significant binding, two tests were used. 

First, the regulatory coefficients of bound genes were compared to those of unbound genes 

using a non-parametric Mann-Whitney test to identify significantly different means. Because 

of the possibility that this significance was driven by skewed covariates from unbound 

genes, we also tested whether the coefficients of bound genes significantly deviated from 0, 

using the non-parametric one-sample Wilcox test. Finally, because TFs could both activate 

and repress genes, we examined the number of bound genes significantly up- or down-

regulated. To do this, we used the distribution of covariates of unbound genes to define 

thresholds at the 5th percentile of lowest negative and highest positive coefficients. Any 

bound genes with coefficients that surpassed the thresholds were considered significant. 

Between the set of genes with significant positive and negative coefficients, we used the 

larger set to infer whether the transcription factor was activating or inhibiting gene 

expression. Only BMDC expressed genes were considered in all ChIP-Seq analysis.

Power analysis and experimental design considerations—Power analysis was 

performed to determine how many cells are required to observe a signal as a function of 

observed effect size and baseline expression of a gene.

As an estimate of required read depth, we downsampled at the UMI level. For example, for a 

vector of gene expression for a cell with the following values: [2,0,1,6] we convert it into the 

following vector [1,1,3,4,4,4,4,4,4] on which downsampling is performed with equal 

probability without replacement. It is reconstructed into the original probability space by 

binning the observed integer counts. We also downsampled cells are without replacement 

from our observed set.

We performed our regression analysis on the downsampled expression matrix for various 

amounts of downsampling and recomputed resulting regulatory matrix. For each level of 

downsampling, 10 instances are averaged. We compared between the original regulatory 

matrix and the matrix that results after downsampling using either a Pearson correlation. For 

the supplementary figures, we thresholded the original regulatory matrix at the specified 

effect size and then calculated the sensitivity and specificity relationship for each 

downsampled regulatory matrix. We report the maximum sensitivity achievable if the false 

positive rate is kept under 10%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Pooled CRISPR screen with scRNA-seq readout

• Integrated model of perturbations, single cell phenotypes, and epistatic 

interactions

• Effect of TFs on genes, programs, and states in LPS response in 

immune cells

• Downsampling assessment of feasibility of genome-wide or 

combinatorial screens
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In brief

A technology combining single-cell RNA sequencing with CRISPR-based perturbations 

termed pertub-seq makes analyzing complex phenotypes at a large scale possible
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Figure 1. Perturb-seq: pooled screening of transcriptional profiles of perturbations
(A) Overview. (B) Perturb-seq vector. (C) Perturb-seq screens in this study. (D) Distribution 

of number of guides detected per cell in stimulated BMDCs. (E) Distribution of the 

significance (−log10(P-value)) of the effect of each guide on its target (gray shaded rectangle 

corresponds to p<0.05 threshold). (F) Modeling framework. We fit coefficients of a 

(regulatory) matrix (β) to the observed expression profiles of each cell (matrix Y) given the 

sgRNA and other covariates in the design matrix (X). See also Figure S1.
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Figure 2. MIMOSCA: A scalable model for Perturb-seq
(A) Model relates a continuous phenotype (arrow) to a covariate (here, guide identity). (B–
D) Accounting for differences in cell quality and state. Scatter plots show for every cell (dot) 

the relation between the expression of Ccl17 (Y axis) or its residual after a model is fit and 

the number of transcripts in the cell (X axis; log (total transcripts detected)), in the original 

data (B), after including quality measures as covariates (C) and after also including cell state 

proportions (D). (E) Cell states. Cells are in either of two states (red, blue) and perturbation 

by sgRNA1 increases the proportion of cells in one over the other. (F,G) Accounting for cell 

states. Effect on Ccl17 expression (Y axis) in cells with (+) and without (−) sgRela-3, in the 
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original model (left) and when including cell state proportions (right). Table: high Ccl17 

expression in cell state 6, whose proportion changes most due to sgRela-3. (H) Distinction 

of cells affected or unaffected by a perturbation. Left: Distribution of number of cells with 

sgStat1-3 that have a given fit (X axis) to the model of the effect of this perturbation. Right: 

distribution of percentage of cells confidently perturbed by each guide. (I) Contribution of 

each model component (Y axis) to the % variance explained (X axis) by R2 values from 

cross-validation. (J) Correlation matrix between genes in the residuals of the model. See 

also Figure S2.
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Figure 3. The role of 24 TFs in BMDCs stimulated with LPS
(A) TF modules. Pearson correlation (color bar) between the regulatory coefficients of each 

pair of guides (rows, columns) in a model without cell state covariates. Yellow rectangles: 

TF modules. Leftmost column: on-target effect. (B) Agreement between guides targeting the 

same gene. Distribution of correlations between guides targeting the same gene (grey) or 

different genes (blue). (C) Cell states. Enrichment (−log10(q-value)) of induced (red) and 

repressed (blue) genes with GO gene sets (rows) in each cell state (columns) defined for 

wild-type stimulated BMDC. (D) TF effects on cell state proportions. q-values for 
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enrichment (red) or depletion (blue) of guides in cells in each state (columns; as in C). (E, F) 

TF-specific effects. Heatmap (E) as in (A) in a model with cell state covariates. Distribution 

of correlations (F) between guides targeting the same (grey) or different genes (blue). See 

also Figure S3.
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Figure 4. A gene regulatory circuit for BMDCs balances states and responses
(A,B) TF modules controlling transcriptional programs. (A) Regulatory coefficient (β) of 

each guide (columns, color coded) on each gene (rows) in a model without cell state 

covariates. Guides and genes are clustered. Green-white: enrichment of ChIP-bound targets 

of each TF (columns) in each program (rows). (B) Graph, based on (A), associating TF 

modules (top) to programs (bottom). Blue/red arrows: module TFs activate/inhibit program 

(opposite of regulatory coefficient). Bottom: module TFs that are members of program 

(blue/red: activator/repressor of program). (C,D) TF circuit. (C) Heatmap, as in (A), but only 
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of genes (rows) that encode TFs targeted by guides (columns). (D) Schematic of the 

associations in (C). Nodes: TFs; Blue/red arrows: activation/inhibition; Modules: grey 

shading. (E–G) Agreement with ChIP-seq. (E) Expected effects of TF perturbation. (F) 

Average regulatory effect of each guide (rows) on the genes bound by its target at four time 

points (columns). (G) Proportion of bound targets at 120 min post-LPS for each TF (rows) 

that are repressed (blue), activated (red) or unaffected (grey) by the TF’s perturbation. 

Asterisks: significant (as in F, P < 0.05). See also Figure S4.
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Figure 5. Genetic interactions between TFs in BMDCs
(A) Model with interactions. (B) TF interactions affecting cell states in stimulated BMDCs. 

Enrichment (red) or depletion (blue) of single, pair and triplets of guides (rows) in cells in 

each state (as in Figure 3C). (C) Three-way genetic interaction reduces probability of cell 

state 3. Probabilities of assignment to cell state 3 of the individual, pair-wise and three-way 

interactions. (D) 27 genetic interaction categories between two genes (A,B), with positive 

(red), negative (blue) or no (white) regulatory coefficients marginally associated with each 

individual guide or their combination. (E) Distribution of target genes in each of the 27 

categories (rows) for every pair of perturbations assayed for interaction (columns). (F) 
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Genetic interaction between Rela and Nfkb1 associated with co-binding. Marginal 

regulatory coefficients for Rela, Nfkb1 and their interaction term for each gene (rows) with 

at least one non-zero coefficient, sorted by key categories (color code, left). Right: ChIP-seq 

enrichment of individually bound and co-bound targets in each group.
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Figure 6. Perturb-seq of non-essential TFs and cell cycle regulators in K562 cells
(A–E) TFs. (A,B) Modules. As in Figure 3A, for models either without (A) or with (B) cell 

state covariates. (C) TFs effects on cell state proportions. As in Figure 3D, for TFs (rows) in 

each state (shown in Figure S6G). (D,E) Agreement of guide effects across time points. 

Distribution of correlations between guides targeting the same gene (grey), different genes 

(blue) and a gene and an intergenic region (red) within and across time points (T1=7d, 

T2=14d), in either a model that does not (D) or does (E) include cell state covariates. (F) 

Cell cycle regulators. The effect (color bar, average regulatory coefficients) of guides 

targeting each gene (rows) on cell cycle phase signatures (columns). See also Figure S6.
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Figure 7. Prospects for Perturb-seq
(A,B) Saturation analysis. Effect of the number of cells (Y axis) and reads (X axis) on 

recovery as measured by correlation (color bar) with either the per gene (A) or cell state 

signature (B) effects observed in the full data. The number of cells per perturbation (1.0) is a 

mean of 300 and a median of 155 and the number of transcripts per cell (1.0) is a median of 

5,074. (C) Tradespace of number of cells (X axis) and measurements per cell (Y axis) 

required for scaling Perturb-seq. (D) Future extensions, by scaling the number of cells (left) 

or incorporating other cell covariates (right), such as lineage (tree), marker expression 

(binned distribution), or time course information (timer), and a more generalized modeling 

of the relationship between X and Y (Y=f(X)).
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