4,779 research outputs found

    Scaling behavior of the momentum distribution of a quantum Coulomb system in a confining potential

    Full text link
    We calculate the single-particle momentum distribution of a quantum many-particle system in the presence of the Coulomb interaction and a confining potential. The region of intermediate momenta, where the confining potential dominates, marks a crossover from a Gaussian distribution valid at low momenta to a power-law behavior valid at high momenta. We show that for all momenta the momentum distribution can be parametrized by a qq-Gaussian distribution whose parameters are specified by the confining potential. Furthermore, we find that the functional form of the probability of transitions between the confined ground state and the nthn^{th} excited state is invariant under scaling of the ratio Q2/νnQ^2/\nu_n, where QQ is the transferred momentum and νn\nu_n is the corresponding excitation energy. Using the scaling variable Q2/νnQ^2/\nu_n the maxima of the transition probabilities can also be expressed in terms of a qq-Gaussian.Comment: 6 pages, 5 figure

    Lattice dynamics of palladium in the presence of electronic correlations

    Full text link
    We compute the phonon dispersion, density of states, and the Gr\"uneisen parameters of bulk palladium in the combined density functional theory (DFT) and dynamical mean-field theory (DMFT). We find good agreement with experimental results for ground state properties (equilibrium lattice parameter and bulk modulus) and the experimentally measured phonon spectra. We demonstrate that at temperatures T20 KT \lesssim 20~K the phonon frequency in the vicinity of the Kohn anomaly, ωT1(qK)\omega_{T1}({\bf q}_{K}), strongly decreases. This is in contrast to DFT where this frequency remains essentially constant in the whole temperature range. Apparently correlation effects reduce the restoring force of the ionic displacements at low temperatures, leading to a mode softening.Comment: minor revision

    Thermo-mechanic-electrical coupling in phospholipid monolayers near the critical point

    Full text link
    Lipid monolayers have been shown to represent a powerful tool in studying mechanical and thermodynamic properties of lipid membranes as well as their interaction with proteins. Using Einstein's theory of fluctuations we here demonstrate, that an experimentally derived linear relationship both between transition entropy S and area A as well as between transition entropy and charge q implies a linear relationships between compressibility \kappa_T, heat capacity c_\pi, thermal expansion coefficient \alpha_T and electric capacity CT. We demonstrate that these couplings have strong predictive power as they allow calculating electrical and thermal properties from mechanical measurements. The precision of the prediction increases as the critical point TC is approached

    Body satisfaction and physical appearance in gender dysphoria

    Get PDF
    Gender dysphoria (GD) is often accompanied by dissatisfaction with physical appearance and body image problems. The aim of this study was to compare body satisfaction with perceived appearance by others in various GD subgroups. Data collection was part of the European Network for the Investigation of Gender Incongruence. Between 2007 and 2012, 660 adults who fulfilled the criteria of the DSM-IV gender identity disorder diagnosis (1.31:1 male-to-female [MtF]:female-to-male [FtM] ratio) were included into the study. Data were collected before the start of clinical gender-confirming interventions. Sexual orientation was measured via a semi-structured interview whereas onset age was based on clinician report. Body satisfaction was assessed using the Body Image Scale. Congruence of appearance with the experienced gender was measured by means of a clinician rating. Overall, FtMs had a more positive body image than MtFs. Besides genital dissatisfaction, problem areas for MtFs included posture, face, and hair, whereas FtMs were mainly dissatisfied with hip and chest regions. Clinicians evaluated the physical appearance to be more congruent with the experienced gender in FtMs than in MtFs. Within the MtF group, those with early onset GD and an androphilic sexual orientation had appearances more in line with their gender identity. In conclusion, body image problems in GD go beyond sex characteristics only. An incongruent physical appearance may result in more difficult psychological adaptation and in more exposure to discrimination and stigmatization

    Infection of neuronal cells by Chlamydia pneumoniae and Herpes simplex virus type 1 alters expression of genes associated with Alzheimer’s disease

    Get PDF
    Several studies have suggested an infectious etiology for Alzheimer’s disease (AD). We have been investigating a potential role for both Chlamydia pneumoniae and Herpes simplex virus type 1 (HSV1) in the initiation of sporadic late-onset AD. Our current study focuses on investigation of gene expression using Alzheimer-specific Real-Time PCR microarrays on RNA derived from SKNMC human neuronal cells infected with C. pneumoniae and/or HSV1. There are distinct differences in the patterns of gene regulation by the two pathogens. For example, C. pneumoniae induces expression of genes involved in amyloid production and processing, such as β-amyloid precursor protein (APP), β-site APP-cleaving enzyme 1 (BACE1), a γ-secretase complex protein (nicastrin [NCSTN]), NEDD8 activating enzyme E1 (NAE1), as well as a mitochondria-associated protein (hydroxysteroid (17-β) dehydrogenase 10 [HSD17B10]), α-2-macroglobulin (A2M) and the metallopeptidase ADAM9. Conversely, HSV1 tends to down-regulate expression of many genes, including those encoding a component of the γ-secretase complex (anterior pharynx defective 1 homolog A [APH1A]), low density lipoprotein related proteins (LRP1, LRP6, and LRP8), β-synuclein (SNCB) and ubiquinols (UQCRC1, UQCRC2). Co-infection with C. pneumoniae and HSV-1 produced a greater down-regulation of gene expression than that seen with HSV1 alone for several genes, including APP-like proteins (APLP1, APLP2) and kinases (cell division cycle 2 protein [CDC2], cyclin-dependent kinase [CDK5] and CDC2-related kinase [CDKL1]). Our data indicate that both C. pneumoniae and HSV1 can modulate expression of genes associated with AD, and thus could contribute to AD pathology, however these two pathogens likely act via different pathways. Furthermore, for several genes, co-infection with both C. pneumoniae and HSV1 appears to exacerbate the changes in gene expression seen with HSV1 alone.https://digitalcommons.pcom.edu/posters/1007/thumbnail.jp

    Changes in Expression of Genes Associated with Autophagy and Apoptosis in Neuronal Cells Infected with HSV-1may Suggest Infection-induced Mechanisms of Neurodegeneration

    Get PDF
    Background:This study investigates the potential role of herpes simplex virus type 1 (HSV-1) in the pathogenesis of neurodegenerative disorders, such as Alzheimer’s disease (AD), by exploring changes in gene expression related to antiviral immunity and the autophagic pathway. Autophagy is a process that recycles organelles and proteins to create more energy for the cell. This pathway has been linked to neurodegeneration, as malfunctions in the completion of this process lead to a decline in overall cellular health and function. Interestingly, HSV-1 has been shown to block the completion of autophagy, which would potentially contribute to the cytopathic changes observed in AD

    Analysis of Chlamydia pneumoniae-infected monocytes following incubation with a novel peptide, acALY18, implicates the inflammasome in clearance of infection

    Get PDF
    Chlamydia pneumoniae infection may be a trigger for the pathology observed in sporadic lateonset Alzheimer’s disease as a function of initiating neuroinflammation following entry of the organism into the brain. We have hypothesized that one entry mechanism may be by bloodborne infected monocytes trafficking the infection into the brain. This study focuses on infection of monocytes in vitro followed by analysis using immunofluorescence labeling and RT-PCR-microarray techniques. The microarrays utilized consisted of an Alzheimer’s disease pathway array and an innate and adaptive immunity array from SAbiosciences. Analysis by real time PCR for both gene arrays was performed on uninfected and C. pneumoniae-infected THP1 monocytes at 48 hr post-infection. In addition, we analyzed innate and adaptive immunity gene regulation changes following treatment of infected cells with a unique peptide, acALY18, derived from the endogenously expressed endoplasmic reticulum protein TRPC1. The peptide appears to stimulate the innate immune system through activation of the inflammasome. C. pneumoniae prominently infected THP1 monocytes at 24-48hr. Numerous large inclusions were identified using specific chlamydial monoclonal antibodies. Monocyte gene expression changes induced by infection with C. pneumoniae revealed significant up-regulation of 45 genes in the Alzheimer’s disease pathway. These included genes involved in: b-amyloid processing and clearance, apoptosis, proteases and protein kinases, and lipid metabolism. In contrast, infection resulted in significant changes in 30 genes governing innate and adaptive immunity including those for: the inflammatory response, host defense against bacteria, cytokines, chemokines, and an antibacterial humoral response. Intriguingly, following incubation of C. pneumoniae-infected cells with the acALY18 peptide (25-50nM) at 24hr post-infection, there was significant clearance of the organism from the monocytes as well as up-regulation of 38 genes. Our data suggest that C. pneumoniae infection of monocytes has a profound effect on gene regulation for both innate and adaptive immunity and for Alzheimer’s disease. Stimulating the innate immune response using the novel peptide, acALY18, promotes clearance of C. pneumoniae from infected monocytes; thereby implicating the inflammasome as a key component in eradicating this infection.https://digitalcommons.pcom.edu/posters/1005/thumbnail.jp

    Polarized nuclear target based on parahydrogen induced polarization

    Full text link
    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast (\sim100 Hz) polarization reversal, and operation with large intensity of an electron beam.Comment: 16 pages, 2 figure

    Optical detection of NMR J-spectra at zero magnetic field

    Full text link
    Scalar couplings of the form J I_1 \cdot I_2 between nuclei impart valuable information about molecular structure to nuclear magnetic-resonance spectra. Here we demonstrate direct detection of J-spectra due to both heteronuclear and homonuclear J-coupling in a zero-field environment where the Zeeman interaction is completely absent. We show that characteristic functional groups exhibit distinct spectra with straightforward interpretation for chemical identification. Detection is performed with a microfabricated optical atomic magnetometer, providing high sensitivity to samples of microliter volumes. We obtain 0.1 Hz linewidths and measure scalar-coupling parameters with 4-mHz statistical uncertainty. We anticipate that the technique described here will provide a new modality for high-precision "J spectroscopy" using small samples on microchip devices for multiplexed screening, assaying, and sample identification in chemistry and biomedicine.Comment: 15 pages, 4 Figure
    corecore