131 research outputs found
The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri
The development of systemic approaches in biology has put emphasis on
identifying genetic modules whose behavior can be modeled accurately so as to
gain insight into their structure and function. However most gene circuits in a
cell are under control of external signals and thus quantitative agreement
between experimental data and a mathematical model is difficult. Circadian
biology has been one notable exception: quantitative models of the internal
clock that orchestrates biological processes over the 24-hour diurnal cycle
have been constructed for a few organisms, from cyanobacteria to plants and
mammals. In most cases, a complex architecture with interlocked feedback loops
has been evidenced. Here we present first modeling results for the circadian
clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock
genes have been shown to play a central role in Ostreococcus clock. We find
that their expression time profiles can be accurately reproduced by a minimal
model of a two-gene transcriptional feedback loop. Remarkably, best adjustment
of data recorded under light/dark alternation is obtained when assuming that
the oscillator is not coupled to the diurnal cycle. This suggests that coupling
to light is confined to specific time intervals and has no dynamical effect
when the oscillator is entrained by the diurnal cycle. This intringuing
property may reflect a strategy to minimize the impact of fluctuations in
daylight intensity on the core circadian oscillator, a type of perturbation
that has been rarely considered when assessing the robustness of circadian
clocks
Arginase, Arginine Decarboxylase, Ornithine Decarboxylase, and Polyamines in Tomato Ovaries (Changes in Unpollinated Ovaries and Parthenocarpic Fruits Induced by Auxin or Gibberellin)
Abstract
Arginase (EC 3.5.3.1) activity has been found in the ovaries and Young fruits of tomato (Lycopersicon esculentum Mill. cv Rutgers).Changes in arginase, arginine decarboxylase (EC 4.1.1.19), and ornithine decarboxylase activity (EC 4.1.1.17) and levels of free and conjugated putrescine, spermidine, and spermine were determined in unpollinated ovaries and in parthenocarpic fruits during the early stages of development induced by 2,4-dichlorophenoxyacetic acid (2,4-D) or gibberellic acid (GA3). Levels of arginase, free spermine, and conjugates of the three polyamines were constant in unpollinated ovaries and characteristic of a presenescent step. A marked decrease in arginase activity, free spermine, and polyamine conjugates was associated with the initiation of fruit growth due to cell division, and when cell expansion was initiated, the absence of arginase indicated a redirection of nitrogen metabolism to the synthesis of arginine. A transient increase in arginine decarboxylase and ornithine decarboxylase was also observed in 2,4-D-induced fruits. In general, 2,4-D treatments produced faster changes than GA3, and without treatment, unpollinated ovaries developed only slightly and senescence was hardly visible. Sensitivity to 2,4-D and GA3 treatment remained for at least 2 weeks postanthesis.</jats:p
BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways
The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leave
Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System
A wide range of organisms features molecular machines, circadian clocks,
which generate endogenous oscillations with ~24 h periodicity and thereby
synchronize biological processes to diurnal environmental fluctuations.
Recently, it has become clear that plants harbor more complex gene regulatory
circuits within the core circadian clocks than other organisms, inspiring a
fundamental question: are all these regulatory interactions between clock genes
equally crucial for the establishment and maintenance of circadian rhythms? Our
mechanistic simulation for Arabidopsis thaliana demonstrates that at least half
of the total regulatory interactions must be present to express the circadian
molecular profiles observed in wild-type plants. A set of those essential
interactions is called herein a kernel of the circadian system. The kernel
structure unbiasedly reveals four interlocked negative feedback loops
contributing to circadian rhythms, and three feedback loops among them drive
the autonomous oscillation itself. Strikingly, the kernel structure, as well as
the whole clock circuitry, is overwhelmingly composed of inhibitory, rather
than activating, interactions between genes. We found that this tendency
underlies plant circadian molecular profiles which often exhibit
sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate
profiles, inhibitory interactions may facilitate the global coordination of
temporally-distant clock events that are markedly peaked at very specific times
of day. Our systematic approach resulting in experimentally-testable
predictions provides insights into a design principle of biological clockwork,
with implications for synthetic biology.Comment: Supplementary material is available at the journal websit
Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis
[EN] Plant development is modulated by the convergence of multiple environmental and endogenous signals, and the mechanisms that allow the integration of different signaling pathways is currently being unveiled. A paradigmatic case is the concurrence of brassinosteroid (BR) and gibberellin (GA) signaling in the control of cell expansion during photomorphogenesis, which is supported by physiological observations in several plants but for which no molecular mechanism has been proposed. In this work, we show that the integration of these two signaling pathways occurs through the physical interaction between the DELLA protein GAI, which is a major negative regulator of the GA pathway, and BRASSINAZOLE RESISTANT1 (BZR1), a transcription factor that broadly regulates gene expression in response to BRs. We provide biochemical evidence, both in vitro and in vivo, indicating that GAI inactivates the transcriptional regulatory activity of BZR1 upon their interaction by inhibiting the ability of BZR1 to bind to target promoters. The physiological relevance of this interaction was confirmed by the observation that the dominant gai-1 allele interferes with BR-regulated gene expression, whereas the bzr1-1D allele displays enhanced resistance to DELLA accumulation during hypocotyl elongation. Because DELLA proteins mediate the response to multiple environmental signals, our results provide an initial molecular framework for the integration with BRs of additional pathways that control plant development.We thank the Nottingham Arabidopsis Stock Centre, Tai-ping Sun, Zhi-Yong Wang, Yanhai Yin, Ana Cano-Delgado, Luis Lopez-Molina, and Francois Parcy for providing seeds or reagents; Laura Garcia-Carcel and Gaston Pizzio for help in the early stages of this work; and Salome Prat for fruitful discussions, sharing unpublished results, and careful reading of the manuscript. J.G.-B. holds a Consejo Superior de Investigaciones Cientificas Fellowship of the Joint Admissions Exercise Predoctoral Program. E. G. M. is recipient of a postdoctoral "Juan de la Cierva" contract from the Spanish Ministry of Science and Innovation. A. L. was supported in part by a fellowship of the Fondo per gli Investimenti della Ricerca di Base Progetto Giovani of the Italian Ministry of Education, University, and Research. Work in the authors' laboratory was funded by Spanish Ministry of Science and Innovation Grants BIO2007-60923, BIO2010-15071, and CSD2007-00057 and by Generalitat Valenciana Grants ACOMP/2010/190 and PROMETEO/2010/020. Rothamsted Research is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) of the United Kingdom.Gallego Bartolomé, J.; Minguet, EG.; Grau Enguix, F.; Abbas, M.; Locascio, AAM.; Thomas, SG.; Alabadí Diego, D.... (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences. 109(33):13446-13451. https://doi.org/10.1073/pnas.1119992109S134461345110933Depuydt, S., & Hardtke, C. S. (2011). Hormone Signalling Crosstalk in Plant Growth Regulation. Current Biology, 21(9), R365-R373. doi:10.1016/j.cub.2011.03.013Alabadi, D., Blazquez, M. A., Carbonell, J., Ferrandiz, C., & Perez-Amador, M. A. (2009). Instructive roles for hormones in plant development. The International Journal of Developmental Biology, 53(8-9-10), 1597-1608. doi:10.1387/ijdb.072423daHartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402(S6761), C47-C52. doi:10.1038/35011540Kuppusamy, K. T., Walcher, C. L., & Nemhauser, J. L. (2008). Cross-regulatory mechanisms in hormone signaling. Plant Molecular Biology, 69(4), 375-381. doi:10.1007/s11103-008-9389-2Jaillais, Y., & Chory, J. (2010). Unraveling the paradoxes of plant hormone signaling integration. Nature Structural & Molecular Biology, 17(6), 642-645. doi:10.1038/nsmb0610-642Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Hou, X., Lee, L. Y. C., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 19(6), 884-894. doi:10.1016/j.devcel.2010.10.024Fonseca, S., Chico, J. M., & Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5), 539-547. doi:10.1016/j.pbi.2009.07.013Frigerio, M., Alabadí, D., Pérez-Gómez, J., García-Cárcel, L., Phillips, A. L., Hedden, P., & Blázquez, M. A. (2006). Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant Physiology, 142(2), 553-563. doi:10.1104/pp.106.084871Vert, G., Walcher, C. L., Chory, J., & Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences, 105(28), 9829-9834. doi:10.1073/pnas.0803996105Nemhauser, J. L., Mockler, T. C., & Chory, J. (2004). Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biology, 2(9), e258. doi:10.1371/journal.pbio.0020258Clouse, S. D. (2011). Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Networks Regulating Plant Development. The Plant Cell, 23(4), 1219-1230. doi:10.1105/tpc.111.084475Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., & Okamoto, S. (2003). Physiological Roles of Brassinosteroids in Early Growth of Arabidopsis: Brassinosteroids Have a Synergistic Relationship with Gibberellin as well as Auxin in Light-Grown Hypocotyl Elongation. Journal of Plant Growth Regulation, 22(3), 259-271. doi:10.1007/s00344-003-0119-3Alabadí, D., Gil, J., Blázquez, M. A., & García-Martínez, J. L. (2004). Gibberellins Repress Photomorphogenesis in Darkness. Plant Physiology, 134(3), 1050-1057. doi:10.1104/pp.103.035451Li, J., Nagpal, P., Vitart, V., McMorris, T. C., & Chory, J. (1996). A Role for Brassinosteroids in Light-Dependent Development of Arabidopsis. Science, 272(5260), 398-401. doi:10.1126/science.272.5260.398Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., … Koncz, C. (1996). Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and De-etiolation in Arabidopsis. Cell, 85(2), 171-182. doi:10.1016/s0092-8674(00)81094-6Chory, J., Nagpal, P., & Peto, C. A. (1991). Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. The Plant Cell, 445-459. doi:10.1105/tpc.3.5.445Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of Microarray Data Using Z Score Transformation. The Journal of Molecular Diagnostics, 5(2), 73-81. doi:10.1016/s1525-1578(10)60455-2Koornneef, M., & van der Veen, J. H. (1980). Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh. Theoretical and Applied Genetics, 58(6), 257-263. doi:10.1007/bf00265176Davière, J.-M., de Lucas, M., & Prat, S. (2008). Transcriptional factor interaction: a central step in DELLA function. Current Opinion in Genetics & Development, 18(4), 295-303. doi:10.1016/j.gde.2008.05.004Leivar, P., Tepperman, J. M., Monte, E., Calderon, R. H., Liu, T. L., & Quail, P. H. (2009). Definition of Early Transcriptional Circuitry Involved in Light-Induced Reversal of PIF-Imposed Repression of Photomorphogenesis in Young Arabidopsis Seedlings. The Plant Cell, 21(11), 3535-3553. doi:10.1105/tpc.109.070672Shin, J., Kim, K., Kang, H., Zulfugarov, I. S., Bae, G., Lee, C.-H., … Choi, G. (2009). Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proceedings of the National Academy of Sciences, 106(18), 7660-7665. doi:10.1073/pnas.0812219106Silverstone, A. L. (2001). Repressing a Repressor: Gibberellin-Induced Rapid Reduction of the RGA Protein in Arabidopsis. THE PLANT CELL ONLINE, 13(7), 1555-1566. doi:10.1105/tpc.13.7.1555Dill, A., Jung, H.-S., & Sun, T. -p. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, 98(24), 14162-14167. doi:10.1073/pnas.251534098Alabadí, D., Gallego-Bartolomé, J., Orlando, L., García-Cárcel, L., Rubio, V., Martínez, C., … Blázquez, M. A. (2007). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. The Plant Journal, 53(2), 324-335. doi:10.1111/j.1365-313x.2007.03346.xYin, Y., Wang, Z.-Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., & Chory, J. (2002). BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation. Cell, 109(2), 181-191. doi:10.1016/s0092-8674(02)00721-3He, J.-X., Gendron, J. M., Yang, Y., Li, J., & Wang, Z.-Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences, 99(15), 10185-10190. doi:10.1073/pnas.152342599Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., … Chory, J. (2002). Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2(4), 505-513. doi:10.1016/s1534-5807(02)00153-3Ryu, H., Kim, K., Cho, H., Park, J., Choe, S., & Hwang, I. (2007). Nucleocytoplasmic Shuttling of BZR1 Mediated by Phosphorylation Is Essential in Arabidopsis Brassinosteroid Signaling. The Plant Cell, 19(9), 2749-2762. doi:10.1105/tpc.107.053728Gampala, S. S., Kim, T.-W., He, J.-X., Tang, W., Deng, Z., Bai, M.-Y., … Wang, Z.-Y. (2007). An Essential Role for 14-3-3 Proteins in Brassinosteroid Signal Transduction in Arabidopsis. Developmental Cell, 13(2), 177-189. doi:10.1016/j.devcel.2007.06.009De Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520Sun, T., & Gubler, F. (2004). MOLECULAR MECHANISM OF GIBBERELLIN SIGNALING IN PLANTS. Annual Review of Plant Biology, 55(1), 197-223. doi:10.1146/annurev.arplant.55.031903.141753He, J.-X. (2005). BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science, 307(5715), 1634-1638. doi:10.1126/science.1107580Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., … Wang, Z.-Y. (2010). Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 19(5), 765-777. doi:10.1016/j.devcel.2010.10.010Triezenberg, S. J., Kingsbury, R. C., & McKnight, S. L. (1988). Functional dissection of VP16, the trans-activator of herpes simplex virus immediate early gene expression. Genes & Development, 2(6), 718-729. doi:10.1101/gad.2.6.718Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448Gallego-Bartolomé, J., Arana, M. V., Vandenbussche, F., Žádníková, P., Minguet, E. G., Guardiola, V., … Blázquez, M. A. (2011). Hierarchy of hormone action controlling apical hook development in Arabidopsis. The Plant Journal, 67(4), 622-634. doi:10.1111/j.1365-313x.2011.04621.xGallego-Bartolomé, J., Alabadí, D., & Blázquez, M. A. (2011). DELLA-Induced Early Transcriptional Changes during Etiolated Development in Arabidopsis thaliana. PLoS ONE, 6(8), e23918. doi:10.1371/journal.pone.0023918Steber, C. M., & McCourt, P. (2001). A Role for Brassinosteroids in Germination in Arabidopsis. Plant Physiology, 125(2), 763-769. doi:10.1104/pp.125.2.763Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A New Class of Transcription Factors Mediates Brassinosteroid-Regulated Gene Expression in Arabidopsis. Cell, 120(2), 249-259. doi:10.1016/j.cell.2004.11.044Müller, B., & Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 453(7198), 1094-1097. doi:10.1038/nature0694
Global Profiling of Rice and Poplar Transcriptomes Highlights Key Conserved Circadian-Controlled Pathways and cis-Regulatory Modules
Circadian clocks provide an adaptive advantage through anticipation of daily and seasonal environmental changes. In plants, the central clock oscillator is regulated by several interlocking feedback loops. It was shown that a substantial proportion of the Arabidopsis genome cycles with phases of peak expression covering the entire day. Synchronized transcriptome cycling is driven through an extensive network of diurnal and clock-regulated transcription factors and their target cis-regulatory elements. Study of the cycling transcriptome in other plant species could thus help elucidate the similarities and differences and identify hubs of regulation common to monocot and dicot plants.Using a combination of oligonucleotide microarrays and data mining pipelines, we examined daily rhythms in gene expression in one monocotyledonous and one dicotyledonous plant, rice and poplar, respectively. Cycling transcriptomes were interrogated under different diurnal (driven) and circadian (free running) light and temperature conditions. Collectively, photocycles and thermocycles regulated about 60% of the expressed nuclear genes in rice and poplar. Depending on the condition tested, up to one third of oscillating Arabidopsis-poplar-rice orthologs were phased within three hours of each other suggesting a high degree of conservation in terms of rhythmic gene expression. We identified clusters of rhythmically co-expressed genes and searched their promoter sequences to identify phase-specific cis-elements, including elements that were conserved in the promoters of Arabidopsis, poplar, and rice.Our results show that the cycling patterns of many circadian clock genes are highly conserved across poplar, rice, and Arabidopsis. The expression of many orthologous genes in key metabolic and regulatory pathways is diurnal and/or circadian regulated and phased to similar times of day. Our results confirm previous findings in Arabidopsis of three major classes of cis-regulatory modules within the plant circadian network: the morning (ME, GBOX), evening (EE, GATA), and midnight (PBX/TBX/SBX) modules. Identification of identical overrepresented motifs in the promoters of cycling genes from different species suggests that the core diurnal/circadian cis-regulatory network is deeply conserved between mono- and dicotyledonous species
- …
