5 research outputs found
Maize Nitrogen Use Efficiency: QTL Mapping in a U.S. Dent x Argentine-Caribbean Flint RILs population
This study was aimed to identify quantitative trait loci (QTL) for nitrogen use efficiency(NUE) and related traits in a maize population derived from a cross between two lines with different genetic background (B100 and LP2). Recombinant inbred lines (181) from this population were evaluated under fieldconditions during two growing seasons, and significant(P < 0.01) phenotypic and genotypic variability was detected for most evaluated traits. Two different mapping methods were applied for detecting QTLs. Firstly, a trait by trait approach was performed on across environments, and 19 QTLs were identified.Secondly, a multi-trait multi-environment analysis detected seven joint QTLs. Almost all joint QTLs had inconsistent additive effects from one environment to another, which would reflectpresence of QTL Ă— Environment interaction. Most joint QTLs co-localized with QTLs detected by indi-vidual mapping. We detected consistent additive effects for grain yield per plant and NUE, as well as for biomass and nitrogen harvest index in some joint QTLs, especially QTL-1 and QTL-6. These QTLs had positive and stable effects across environments, and presence of some genes within these QTL intervals could be relevant for selecting for both NUE and grain yield simultaneously. Up today, this is a firstreport on the co-localization of QTLs for enhan-ced allocation of biomass allocation to grains with NUE, and NUE candidate gene identificaion. Fine mapping of these regions could allow to detect additional markers more closely linked to these QTLs that could be used for marker assisted selection for NUE
Kernel weight in maize: genetic control of its physiological and compositional determinants in a dent Ă— flint-caribbean RIL population
The genetic control of maize kernel weight (KW) determination could be studied through its physiological and/ or compositional determinants. Our objective was to dissect the genetic control of maize KW by analyzing its physiological (KGR: kernel growth rate; KFD: kernel filling duration) and compositional (protein, oil, starch) determinants in a dentĂ—flint Caribbean RIL population, which combines a broad genetic background with grains of high added value for industry. An additional objective was to determine the stability of the genetic control under contrasting growing conditions, for which soil nitrogen offer was modified across experiments. Heritability (H2) values were high for KW (H2 = 0.74) and intermediate for the other traits (from 0.62 to 0.42). Kernel weight had a strong correlation with KFD (r = 0.69), KGR (r = 0.60) and protein concentration (r = 0.56). Ten joint QTL with inconsistent effects across years and seven epistatic interactions were detected. Despite changes in effect size, most QTL were significant under both environments. Nine QTL were associated with variations in potential KW (KW ), mean KW, KGR and oil concentration, eight with variations in protein and starch concentration and seven with KFD. Epistatic interactions were related to regions with significant main effects. The most important finding was the existence of a common QTL for KW , KGR and KFD on chromosome 5, for which there was no previous report. Results increased our knowledge on the genetic control of KW through its phenotypic and genetic correlation with KFD, confirming the need to explore different physiological strategies in different genetic backgrounds
Phenotypic plasticity for biomass partitioning in maize : genotype effects across a range of environments
El rendimiento en grano de maĂz está determinado por el genotipo (G), el ambiente (E) y los efectos de la interacciĂłn G Ă— E que influyen en la expresiĂłn de los rasgos a lo largo del ciclo del cultivo. LĂneas endocriadas e hĂbridos pueden diferir en sus respuestas a las fluctuaciones ambientales, lo que determina cambios en los niveles de heterosis a travĂ©s de los ambientes y, en consecuencia, en el ambiente objetivo para su evaluaciĂłn. Los objetivos de este trabajo fueron (i) comparar rasgos relacionados con el rendimiento en grano, la producciĂłn de biomasa aĂ©rea y su particiĂłn en dos grupos genotĂpicos contrastantes (lĂneas e hĂbridos) y (ii) analizar su desempeño a travĂ©s de ambientes para la evaluaciĂłn de su plasticidad fenotĂpica, asĂ como los efectos del ambiente sobre la expresiĂłn de la heterosis. Construimos un Ăndice ambiental balanceado basado en el rendimiento en grano por planta normalizado (BEINPGY) de 14 ambientes contrastantes utilizando un diseño dialĂ©lico completo de 6 lĂneas endocriadas y analizamos la respuesta de los 12 rasgos evaluados a este Ăndice para cada grupo genotĂpico. Este enfoque nos permitiĂł (i) diferenciar entre rasgos con respuesta lineal (rendimiento de grano, biomasa total, nĂşmero de granos, intervalo antesis-silking y eficiencia reproductiva de la planta), bilineal (Ăndice de cosecha, peso individual del grano, prolificidad y eficiencia reproductiva de la espiga apical) o sin respuesta (tasas de crecimiento de la espiga y de la planta alrededor de floraciĂłn, asĂ como su relaciĂłn) en la plasticidad fenotĂpica de cada grupo al BEINPGY , y (ii) agrupar rasgos de acuerdo a la respuesta de su heterosis absoluta (es decir, plasticidad de la heterosis) al BEINPGY, la cual variĂł en signo (positivo, nulo o negativo) segĂşn el rasgo. Hubo una relaciĂłn clara y positiva entre la plasticidad de la heterosis absoluta y la plasticidad de los rasgos, que estuvo determinada principalmente por los hĂbridos. Los grupos genotĂpicos difirieron en los patrones de asociaciĂłn de los valores de los rasgos per se, asĂ como en sus plasticidades fenotĂpicas, indicativo de las diferentes bases genĂ©ticas que los determinan. El hecho de que el porcentaje de heterosis para el rendimiento en grano y otros rasgos secundarios relevantes no variĂł a travĂ©s de los ambientes, mientras que se espera que la heredabilidad disminuya en condiciones de estrĂ©s, podrĂa contribuir a orientar esfuerzos futuros del mejoramiento con el objetivo de desarrollar hĂbridos superiores con un desempeño exitoso, particularmente en los desafiantes escenarios ambientales futuros.Maize grain yield is determined by genotype (G), environment (E) and G Ă— E interaction effects that influence the expression of traits along the crop cycle. Inbreds and hybrids may differ in their responses to fluctuations in environmental conditions, determining changes in heterosis levels across environments and consequently the target environment for their evaluation. The objectives of this work were (i) to compare traits related to grain yield, aboveground biomass production and its partitioning in two contrasting genotypic groups (inbreds and hybrids) and (ii) to analyze their performance across environments for the assessment of their phenotypic plasticity as well as environmental effects on the expression of heterosis. We built a balanced environmental index based on normalized plant grain yield (BEINPGY) from 14 contrasting environments using a 6-inbred complete diallel mating design and analyzed the response of the 12 evaluated traits to this index for each genotypic group. This approach allowed us to (i) differentiate among traits with simple linear (grain yield, total biomass, kernel numbers, the anthesis-silking interval and plant reproductive efficiency), bilinear (harvest index, individual kernel weight, prolificacy and apical ear reproductive efficiency) or no response (ear and plant growth rates around flowering as well as their relationship) in phenotypic plasticity of each group to the BEINPGY, and (ii) group traits depending upon their absolute heterosis response (i.e., heterosis plasticity) to the BEINPGY, which varied in sign (positive, null or negative) depending upon the trait. There was a clear and positive relationship between absolute heterosis plasticity and traits plasticities, which was mainly driven by hybrids. Genotypic groups differed in the association patterns of traits values per se as well as of their phenotypic plasticities, indicative of the different genetic bases that determine them. The fact that percent heterosis for grain yield and other relevant secondary traits did not vary across environments, whereas heritability is expected to decrease under stressful conditions, may contribute to guide future breeding efforts aiming to develop superior hybrids with successful performance, particularly in future challenging environmental scenarios.EEA PergaminoFil: Galizia, Luciana A. Instituto Nacional de TecnologĂa Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Pergamino. Departamento de EcofisiologĂa; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂa; Argentina.Fil: Munaro, Eugenia M. AgriScience; Estados UnidosFil: Cirilo; Alfredo Gabriel. Instituto Nacional de TecnologĂa Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Pergamino. Departamento de EcofisiologĂa; ArgentinaFil: Otegui, MarĂa Elena. Instituto Nacional de TecnologĂa Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Pergamino. EcofisiologĂa; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de AgronomĂa; ArgentinaFil: D'Andrea, Karina Elizabeth. Universidad de Buenos Aires. Facultad de AgronomĂa; Argentina. Consejo Nacional de investigaciones CientĂficas y TĂ©cnicas; Argentin