62 research outputs found
A chemical tool box defines mitotic and interphase roles for Mps1 kinase
In this issue, three groups (Hewitt et al. 2010. J. Cell Biol. doi:10.1083/jcb.201002133; Maciejowski et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001050; Santaguida et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001036) use chemical inhibitors to analyze the function of the mitotic checkpoint kinase Mps1. These studies demonstrate that Mps1 kinase activity ensures accurate chromosome segregation through its recruitment to kinetochores of mitotic checkpoint proteins, formation of interphase and mitotic inhibitors of Cdc20, and correction of faulty microtubule attachments
Phase I trial of viral vector based personalized vaccination elicits robust neoantigen specific antitumor T cell responses
Purpose: Personalized vaccines targeting multiple neoantigens (nAgs) are a promising strategy for eliciting a diversified antitumor T cell response to overcome tumor heterogeneity. NOUS-PEV is a vector based personalized vaccine, expressing 60 nAgs and consists of priming with a non-human Great Ape Adenoviral vector (GAd20) followed by boosts with Modified Vaccinia Ankara (MVA). Here, we report data of a phase Ib trial of NOUS-PEV in combination with pembrolizumab in treatment naĂŻve metastatic melanoma patients (NCT04990479). Experimental Design: The feasibility of this approach was demonstrated by producing, releasing and administering to six patients 11 out of 12 vaccines within 8 weeks from biopsy collection to GAd20 administration. Results: The regimen was safe, with no treatment-related serious adverse events observed and mild vaccine-related reactions. Vaccine immunogenicity was demonstrated in all evaluable patients receiving the prime/boost regimen, with detection of robust neoantigen specific immune responses to multiple neoantigens comprising both CD4 and CD8 T cells. Expansion and diversification of vaccine-induced TCR clonotypes was observed in the post-treatment biopsies of patients with clinical response providing evidence of tumor infiltration by vaccine-induced neoantigen-specific T cell. Conclusions: These findings indicate the ability of NOUS-PEV to amplify and broaden the repertoire of tumor reactive T cells to empower a diverse, potent and durable antitumor immune response. Finally, a gene signature indicative for reduced presence of activated T cells together with very poor expression of the antigen processing machinery (APM) genes has been identified in pre-treatment biopsies as a potential biomarker of resistance to the treatment
Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine
Addition of reversine to dividing cells ejects Mad1 and the RZZ complex from unattached kinetochores and prevents resolution of incorrect chromosomeâmicrotubule attachments (see also related papers by Hewitt et al. and Maciejowski et al. in this issue)
Inhibition of Autoimmune Diabetes in NOD Mice by miRNA Therapy.
Autoimmune destruction of the pancreatic islets in Type 1 diabetes is mediated by both increased proinflammatory (Teff) and decreased regulatory (Treg) T lymphocytes resulting in a significant decrease in the Treg:Teff ratio. The non-obese diabetic (NOD) mouse is an excellent in vivo model for testing potential therapeutics for attenuating the decrease in the Treg:Teff ratio and inhibiting disease pathogenesis. Here we show for the first time that a bioreactor manufactured therapeutic consisting of a complex of miRNA species (denoted as TA1) can effectively reset the NOD immune system from a proinflammatory to a tolerogenic state thus preventing or delaying autoimmune diabetes. Treatment of NOD mice with TA1 resulted in a systemic broad-spectrum upregulation of tolerogenic T cell subsets with a parallel downregulation of Teff subsets yielding a dramatic increase in the Treg:Teff ratio. Moreover, the murine-derived TA1 was highly effective in the inhibition of allorecognition of HLA-disparate human PBMC. TA1 demonstrated dose-responsiveness and exhibited equivalent or better inhibition of allorecognition driven proliferation than etanercept (a soluble TNF receptor). These findings demonstrate that miRNA-based therapeutics can effectively attenuate or arrest autoimmune disease processes and may be of significant utility in a broad range of autoimmune diseases including Type 1 diabetes
- âŠ