32 research outputs found
Anomalous dispersion of optical phonons at the neutral-ionic transition: Evidence from diffuse X-ray scattering
Diffuse X-ray data for mixed stack organic charge-transfer crystals
approaching the neutral-ionic phase transition can be quantitatively explained
as due to the softening of the optical phonon branch. The interpretation is
fully consistent with vibrational spectra, and underlines the importance of
electron-phonon coupling in low-dimensional systems with delocalized electrons.Comment: 4 pages, 4 figure
Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility
We present a computational approach to model hole transport in an amorphous semiconducting fluorene-triphenylamine copolymer (TFB), which is based on the combination of molecular dynamics to predict the morphology of the oligomeric system and Kinetic Monte Carlo (KMC), parameterized with quantum chemistry calculations, to simulate hole transport. Carrying out a systematic comparison with available experimental results, we discuss the role that different transport parameters play in the KMC simulation and in particular the dynamic nature of positional and energetic disorder on the temperature and electric field dependence of charge mobility. It emerges that a semi-quantitative agreement with experiments is found only when the dynamic nature of the disorder is taken into account. This study establishes a clear link between microscopic quantities and macroscopic hole mobility for TFB and provides substantial evidence of the importance of incorporating fluctuations, at the molecular level, to obtain results that are in good agreement with temperature and electric field-dependent experimental mobilities. Our work makes a step forward towards the application of nanoscale theoretical schemes as a tool for predictive material screening
Modeling the Neutral-Ionic Transition with Correlated Electrons Coupled to Soft Lattices and Molecules
International audienc
Electronic Structure, Electron-Phonon Coupling, and Charge Transport in Crystalline Rubrene Under Mechanical Strain
International audienc
Pentacene Crystal Growth on Silica and Layer-Dependent Step-Edge Barrier from Atomistic Simulations
International audienc
Accurate Prediction of the S 1 Excitation Energy in Solvated Azobenzene Derivatives via Embedded Orbital-Tuned Bethe-Salpeter Calculations
International audienceBy employing the Bethe-Salpeter formalism coupled with a non-equilibrium embedding scheme, we demonstrate that the paradigmatic case of S1 band separation between cis and trans in azobenzene derivatives can be computed with excellent accuracy compared to experimental optical spectra. Besides embedding, we show that the choice of the Kohn-Sham exchange correlation functional for DFT is critical, despite the iterative convergence of GW quasiparticle energies. We address this by adopting an orbital-tuning approach via the global hybrid functional, PBEh, yielding an environment-consistent ionization potential. The vertical excitation energy of 20 azo molecules are predicted with a mean absolute error as low as 0.06 eV, up to three times smaller compared to standard functionals such as M06-2X and PBE0, and five times smaller compared to recent TDDFT results
Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids
International audienceWe present an original hybrid QM/MM scheme merging the many-body Green’s function GW formalism with classical discrete polarizable models and its application to the paradigmatic case of a pentacene crystal. Our calculated transport gap is found to be in excellent agreement with reference periodic bulk GW calculations, together with properly parametrized classical microelectrostatic calculations, and with photoionization measurements at crystal surfaces. More importantly, we prove that the gap is insensitive to the partitioning of pentacene molecules in QM and MM subsystems, as a result of the mutual compensation of quantum and classical polarizabilities, clarifying the relation between polarization energy and delocalization. The proposed hybrid method offers a computationally attractive strategy to compute the full spectrum of charged excitations in complex molecular environments, accounting for both QM and MM contributions to the polarization energy, a crucial requirement in the limit of large QM subsystems
Electronic Polarization in Organic Crystals: A Comparative Study of Induced Dipoles and Intramolecular Charge Redistribution Schemes
Static dielectric tensors and charge carrier polarization energies of a wide set of organic molecules of interest for organic electronics application are calculated with two different approaches: intramolecular charge redistribution and induced dipoles (microlectrostatics). Our results show that, while charge redistribution is better suited for calculating the collective response to an external field, both methods reliably describe the effect of a localized charge carrier in the crystal. Advantages and limitations inherent to the different methods are discussed, also in relation to previous theoretical studies. The agreement with available experimental data confers to our results a predictive character where measurements are missing