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Abstract

We present a computational approach to model hole transport in an amorphous semi-

conducting fluorene-triphenylamine copolymer (TFB), which is based on the combination

of Molecular Dynamics to predict the morphology of the oligomeric system, and Kinetic

Monte Carlo (KMC), parameterized with quantum chemistry calculations, to simulate hole

transport.

Carrying out a systematic comparison with available experimental results, we discuss

the role different transport parameters play in the KMC simulation, and in particular the

dynamic nature of positional and energetic disorder on the temperature and electric field

dependence of charge mobility. It emerges that a semi-quantitative agreement with exper-

iments is found only when the dynamic nature of the disorder is taken into account. This

study establishes a clear link between microscopic quantities and macroscopic hole mobility

for TFB, and provides substantial evidence of the importance of incorporating fluctuations,

at the molecular level, to obtain results that are in good agreement with temperature and

electric field-dependent experimental mobilities. Our work makes a step forward towards

the application of nanoscale theoretical schemes as a tool for predictive material screening.

∗ Luca.Muccioli@unibo.it
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I. INTRODUCTION

Amorphous semiconducting polymers, due to their proven versatility, offer substantial

advantages in terms of ease of processing and low production costs, with promising appli-

cations in the field of organic electronics, such as solar cells, light emitting diodes and field

effect transistors. Recent investigations suggest that charge transport in conjugated poly-

mers is not simply governed by the degree of crystallinity, but in general by the presence

of aggregates with short-range order, that promote inter-chain charge transport.[1] Exper-

imental evidence that aggregation of polymer chains with sufficient short-range order and

interconnected domains, in a globally amorphous structure, is sufficient to promote charge

transport[2, 3] points towards the refinement of models conventionally employed for describ-

ing charge transport in crystalline organic semiconducting systems.

As polymer chains are bound by weak interactions with multiple degrees of freedom, pa-

rameters influencing hole mobility that should be included in the modeling of hole transport

include (i) the length of polymer chains, (ii) the conformational freedom along the chain

subunits, (iii) the conformation space of the polymer, (iv) the number of possible neigh-

boring units, and (v) the orientation of each chain with respect to the direction of external

electric field.[4–8] The theoretical frameworks developed to address the role of morphology

on electronic transport in semiconducting polymers demonstrate that intra-chain transport

dominates at shorter length scales with high mobilities, up to 10-100 cm2V−1s−1[9], while

inter-chain transport prevails at larger displacements, with mobilities a few orders of mag-

nitude lower. The slowest inter-chain transport defines the limiting charge carrier mobility

attainable at mesoscopic device scale.[5, 10] Such theoretical approaches, in conjunction

with Molecular Dynamics (MD) simulations, where reasonably accurate polymer morpholo-

gies can be obtained,[11, 12] provide substantial information about the effect of polymer

morphology and local structure on charge transport properties of the polymeric system un-

der study.[13]

The main complexity originates from the need of incorporating the whole morphological vari-

ability of the macromolecular system into the charge transport modelling. Indeed, a theoret-

ical study at the atomistic level, which considers both intra- and inter-chain transport and

explicitly takes into account all possible fluctuations over many timescales and morpholo-

gies, is a challenging task, both scientifically and in terms of computational resources.[14]
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Such frameworks are particularly unpractical for preliminary material screening, whereas a

simplified methodology, able to provide reliable results with respect to experimental obser-

vations at low computational cost, would be more appropriate.

In what follows, we describe a step forward the realization of this objective, in which, with

a combination of MD and KMC simulations, we systematically compare computational pre-

dictions with experimental temperature-dependent mobilities. As a case study, we consider

the [(9,9-dioctylfluorenyl-2,7-diyl) (4,4′-(N-(4-sec-butylphenyl))] diphenylamine alternating

copolymer, also known as TFB (figure 1). TFB is an amorphous polymer[15] with relatively

high hole mobility[16, 17] which has been the subject of several fundamental studies,[18–

22] and it is employed in practical applications such as light emitting diodes [23] and solar

cells.[24–26] Our approach is based on two main and interdependent assumptions: (i) that

the holes are localized along short segments of the polymer chain, and (ii) that hole transport

can be described as a hopping process between those oligomeric units. Evidence supporting

these hypotheses is provided, and their consequences on calculated charge carrier mobilities

are discussed in detail.

II. COMPUTATIONAL DETAILS

Molecular Dynamics simulations

We focused on TFB oligomers composed of five 9,9-dioctylfluorene (FLU) units, alter-

nated with four butyl triphenylamine (TPA) co-monomer units (see figure 1). This specific

oligomer length was chosen as it corresponds to the upper limit of the conjugation length of

TFB, as estimated on the basis of quantum chemical calculations reported by Sancho-Garćıa

et al.[27] Our choice of this oligomer approach[11, 28–30] in modeling charge transport in

TFB, was also motivated by practical reasons, such as the possibility of dealing with rea-

sonable box sizes and short equilibration times.

We employed a united-atom[31] force field complemented with quantum chemical calcula-

tions for atomic charges and torsional potentials, as detailed in the supplemental material.

All molecular dynamics simulations were performed with the NAMD software [32]. In order

to simulate amorphous TFB samples, the starting geometries for the simulation were built

by introducing a certain degree of randomness, according to the following procedure: (i) the

4



starting geometry was generated by placing the oligomers with random orientations on the

nodes of a cubic mesh of 5×5×5 sites, with a lattice constant of 80 Å; (ii) the low-density

sample was compressed at 1000 K and 100 atm up to a rough volume stabilization, that

occurs in about 1 ns; (iii) high-temperature annealing was performed for 10 ns of simulation

at 1000 K and 1 atm; (iv) equilibration was carried out for 20 ns of simulation at TMD=300

K and 1 atm; (v) this procedure was applied to simulate four different and uncorrelated

samples composed of 125 oligomers (33380 united atom centers). A snapshot of one of the

four samples after equilibration at 300 K is shown in the right panel of figure 1. The fi-

nal density of the four samples is 0.987 ± 0.006 g/cm3. It is worth noting that since the

equilibration temperature is well below the experimental glass transition, i.e. 393-415 K

depending on film thickness[15], significant changes on the morphology are not expected at

lower temperatures. For this reason, and for keeping the approach computationally efficient,

all charge transport simulations were conducted on the 300 K morphologies, neglecting the

density variation with temperature. It is worth noting that this preparation scheme does

not take into account any solvent inclusion in the polymer, and therefore leads to ideal,

completely amorphous morphologies in which the number of contacts between the chains is

maximized.

Charge transport model

Charge transport in amorphous TFB was described with a hopping model. Specifically,

we resort to Marcus formula for hopping rates,[33] describing non-adiabatic hole transfer in

the weak coupling regime, which has been widely employed to compute the charge transfer

rates between adjacent molecules in organic semiconductors.[34] The charge transfer rate in

the semi-classical Marcus formalism reads:

kij =
2π

~
J2
ij√

4πλkBT
exp

[
−(∆Gij + λ)2

4λkBT

]
(1)

with ∆Gij = εj − εi + e ~E · ~Rij (2)

where e is the elementary charge, εi and εj are the energies sites i and j involved in the charge

transfer, ∆Gij is the energy difference between the initial and final states, Jij is the electronic

coupling (or transfer integral) λ = λi +λe is the reorganization energy, kB is the Boltzmann

constant and T is the temperature. In the presence of an applied electric field ( ~E), ∆Gij
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FIG. 1. Left: Chemical structure of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-sec-

butylphenyl)diphenylamine)] (TFB, top), and example of an individual oligomer conformation

as produced by MD simulations at united atom level; FLU and TPA units are shown in green and

blue, respectively while aromatic rings are highlighted in red (bottom). Right: Snapshot of a single

sample after equilibration at 300 K and 1 atm, under periodic boundary conditions.

also includes the contribution e ~E · ~Rij, ~Rij being the site-site distance vector. As positions

of the sites, we used the center of the Mulliken charges evaluated from single point AM1

calculations[35] for positively charged oligomers at their instantaneous MD geometries. The

reorganization energy consists of (i) an internal contribution (λi) associated to the change

in geometry upon charge transfer and (ii) an external contribution (λe) which reflects the

structural and electronic changes in the surrounding medium. The intramolecular part was

set λi = 0.1 eV on the basis of DFT calculations carried out on oligomers of increasing length

(see supplemental material), a value very similar to the one reported for the well-known

poly(3-hexylthiophene (P3HT),[36] and for the TPA moiety.[37] The external contribution,

a challenging quantity to calculate exactly,[38] was set to λe = 0.2 eV in the majority of the

calculations, a value expected for a low dielectric constant medium according to classical

continuum model calculations[39], and in line with theoretical estimates for oligoacenes

crystals.[38]

For all molecules of the four MD samples the following conditions were applied: (i) for

quantum chemistry calculations the hydrogen atoms, absent in the MD model, were added to

simulated molecular structures using geometrical criteria; (ii) hole transfer integrals Jij were
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calculated as one-electron HOMO-HOMO couplings using the dimer projection method [40]

at the ZINDO level of theory with the Mataga-Nishimoto potential [41, 42]; (iii) periodic

boundary conditions were employed to select the pairs of molecules in contact, using 6

Å as the interatomic cutoff distance between atoms belonging to different molecules; (iv)

site energies εi, εj were approximated by ZINDO HOMO energies, including the effect of

distortion of the molecular geometry in realistic conformations.

Although the energetic disorder introduced by intermolecular electrostatic interactions, due

to permanent and induced dipoles, can play a key role in improving charge separation at

heterojunctions,[43–45] and charge-carrier localization[46], it was not included in this work

because of the nonpolar nature of TFB, which implies low energetic disorder as confirmed

by Malliaras et al.[18].

Charge Propagation

The propagation of charges is simulated with the Kinetic Monte Carlo (KMC) technique.

The charge is initially located at a randomly chosen site i. The hopping rates kij from donor

site i to any potential acceptor site j, computed using equation 1, are employed to generate

instantaneous hopping times τij in the framework of the “first reaction” method [47]:

τij =
1

kij
ln

1

ξ
(3)

where ξ is a random number drawn from a uniform distribution within the interval 0 to 1.

The destination site i′ is selected from the set of available neighbor sites j as the one having

the smallest reaction time τminij . The simulation progresses by following the subsequent

hopping steps during charge propagation and the simulated elapsed time is increased by τii′

at each hopping step. All the KMC simulations were run assuming a linear voltage profile

across the sample, by varying the magnitude of the electric field from E = 1 · 104 V/cm to

30 ·104 V/cm. In each simulation, a single charge is propagated, using 3D periodic boundary

conditions, until it covers a fixed distance d = 4 µm along the direction of the electric field

vector. Since only one charge is present at a time, the simulation targets the limit of very

low charge densities following experimental evidence of charge density-independent mobility

for a polymer very similar to TFB.[48] For each charge propagation run k, mobility is then
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estimated as:

µk =
d

E

1

τk
(4)

where τk is the sum of all hopping times τii′ , i.e. the time needed for a charge propagating in

the field direction to cover the distance d. Unless explicitly stated, mobility values reported in

this work are averages over 500 up to 750 KMC runs performed with the electric field vector

parallel to x, y and z Cartesian directions, and over the four MD samples. Average values

are reported either as arithmetic means, µ = (
∑

k µk)/N , or as logarithmic means µln =

exp(
∑

k lnµk/N), as the latter is a better estimator of the mobility in small samples.[49]

We noticed that for our sample sizes and propagation distances the two means are almost

coincident, indicating a satisfactory convergence of the KMC simulations.

Analysis of charge mobilities

According to Bässler [50], at intermediate fields and in conditions of thermally-assisted

hopping, the dependence of mobility on electric field modulus can be described by the

following empirical relation:

µ(E) = µ0 exp
(
β
√
E
)

(5)

where β > 0 is the Poole-Frenkel factor. Using zero field, temperature-dependent mobil-

ities µ0(T ) derived from equation 5, the “apparent” diagonal energetic disorder σA and the

infinite temperature mobility (µ∞) may in turn be obtained by extrapolating the tempera-

ture dependence of µ0 with:

µ0(T ) = µ∞ exp

[
−4

9

(
σA
kBT

)2
]

(6)

The Poole-Frenkel factor depends on both apparent diagonal (σA) and off-diagonal (ΣA)

disorders:

β(T ) = C

[(
σA
kBT

)2

− Σ2
A

]
(7)

with C being an empirical proportionality factor. The combination of equations 5, 6, and

7 provides an approximate[51] but universal equation for the dependence of mobility on

temperature, field, and energetic disorder. We use this theoretical framework to compare

our data with experimental results obtained by Malliaras and coworkers[18, 52].
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In the original Gaussian disorder lattice model (GDM)[50] σA and ΣA correspond to

the standard deviations of the distributions of site energies (the density of states, DOS)

and transfer integrals. In the present work we label these two parameters as “apparent”,

since they are effective quantities extracted by fitting the mobility obtained from our off-

lattice KMC simulations with the equations above, which are strictly valid only for the

Gaussian disorder model. The apparent tag serves to distinguish the phenomenological

disorder parameters obtained by such a fit from the microscopic parameters employed in

our KMC simulations. Although the GDM model prescribes a 1/T 2 dependence of the

logarithm of the mobility, it has been shown experimentally that often the temperature

dependence of the mobility of organic semiconductors at low fields,[53] and for exponential

densities of states,[54] can be well reproduced with an Arrhenius law, a behaviour also well

established for inorganic disordered semiconductors[51]:

µ0(T ) = µ′∞ exp

[
− ∆

kBT

]
(8)

We used the latter equations to fit the temperature dependence of the zero field mobility,

obtained by extrapolating simulation and experimental data with equation 6. The infinite

temperature mobility in equation 8 is primed because it is different (higher) with respect to

the one obtained by fitting with equation 6.

III. RESULTS AND DISCUSSIONS

A. Charge transport parameters

We initially analyzed the fluctuations of site energies in the samples, which generate

the so-called diagonal (energetic) disorder, known to strongly influence charge transport[46,

50, 55–58]. The distribution of site energies (HOMO levels) calculated at MD geometries

has an approximately Gaussian shape with standard deviation σε = 50.2 meV (Figure S5),

consistent with the assumptions of the Gaussian disorder model. This value is also close to

the effective disorder σA = 65.9 meV reported by Fong et al.[18], and was hence used in our

KMC simulations.

Other fundamental parameters in determining the transfer rate, besides the reorgani-

zation energy discussed previously, are the magnitude of the electronic couplings between

the different sites (the nodes of the charge percolation network) and the average number of
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pathways linking one node to the others, i.e. the number of neighboring sites with non-zero

electronic couplings. When examining the calculated transfer integrals it is interesting to

notice (Figure S6) the very low values of the couplings, with an average value of 0.40 meV,

when for instance values of the order of ∼10 meV are found for crystalline and amorphous

fullerenes at short intermolecular distances [46]. In addition, as it happens also for crystalline

systems along the directions with small couplings[59], the standard deviation σJ = 1.43 meV

is higher than the mean value, suggesting an important contribution of dynamic fluctuations

on the mobility values.[60] Despite the low coupling values, the number of neighbors with

non zero coupling (J > 0.1 meV) ranges between 10 and 20 per oligomer, ensuring a high

number of percolation pathways for charge transport. Such couplings most often correspond

to triphenylamine-triphenylamine contacts, while fluorene-fluorene contacts are less frequent

because of the presence of the bulky dioctyl substituent on one side of the indeno group (cf

figure 1). The chemical design principle of attaching the solubilizing side chains on the

fluorene unit is of course beneficial for charge transport, since the hole is mostly localized on

a triphenylamine unit (87% according to AM1 calculations), and then the HOMO-HOMO

contacts are maximized if this region of the backbone is not hidden by the alkyl chains.

B. Mobility calculated for static networks

In the following sections we address in detail the relation between charge transport sim-

ulation parameters and calculated mobility as a function of temperature and electric field,

utilizing the comparison with available experimental data as an assessment of the simula-

tion predictions. In doing this, we implicitly assume that an oligomeric representation of the

polymer is sufficient to describe the charge transport for longer chains; this means that the

conjugation length of the charge is assumed to be shorter than the oligomer length, and that

inter and intrachain charge transport mechanisms are equally well described by oligomer-

oligomer hopping and have identical characteristic times.[5] A low conjugation length is

expected for an amorphous and relatively flexible polymer like TFB, which was verified at

the AM1 level by the observation that for our structures the extra charge is indeed local-

ized on average within 1.5 units only. A similarly short localization length was reported

by Sancho-Garćıa et al. for polyfluorene and TFB.[27] The molecular origin of the short

conjugation length are the equilibrium values of the torsional angles along the chain, which
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are far away from the planar conformation, see also figures S3 and S5. Working at the low

molecular weight limit implies that trapping at the chain ends is maximized,[7] hence we

would expect to somewhat underestimate experimental mobilities for long polymer chains,

which for TFB are on the order of 10−2 cm2/(Vs) at room temperature.[18]

We started with running KMC simulations on the original MD samples (denoted as R1 in

Table I) with site energies and transfer integrals calculated for each sample at the ZINDO

level (εQ, JQ). In these simulations charges are therefore propagating in a transport network

whose properties are static in time, corresponding to single snapshots of the samples. As dis-

cussed in the literature, [36, 61, 62] transfer integrals fluctuate over timescales often shorter

than the typical hopping times and taking a static picture eventually leads to an underes-

timation of materials mobility. The KMC output at different electric fields are reported in

figure 2. Apart the underestimation of the experimental mobilities of one or two orders of

magnitude, what is striking in figure 2 is the absence, at least at the higher temperatures,

of the Poole-Frenkel behaviour (lnµ ∝ E1/2) reported experimentally. To demonstrate that

this offset is not originated by an unrealistically high value of the reorganization energy,

we report in the same panels also mobilities calculated with λ=100 meV (filled symbols),

which can be considered a lower limit for this parameter[63]. The calculated mobilities for

λ=100 meV are of course larger than the ones obtained at λ=300 meV (empty symbols),

consistently with equation 1, but they are still one order of magnitude lower than the ex-

perimental values and show a decreasing trend of mobility with field at high temperature.

C. Effect of sample size and of dynamic diagonal disorder

In order to understand the factors that contribute to the large offset between simulations

and experiment, KMC simulations were carried out by considering different conditions: (i)

sample size, varied by replicating in space the original MD box (R1) two or three times along

each Cartesian direction (R2 and R3 respectively); (ii) diagonal disorder, with site energies

assigned from quantum chemistry calculations (εQ), or randomized by extracting site energy

values from a Gaussian distribution having the same standard deviation of the calculated

HOMO energies, either at the beginning of each KMC simulation (static, εSG) or at each

KMC step (dynamic, εG); (iii) fixed (JQ) or dynamic off-diagonal disorder (JG). While the
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FIG. 2. Average mobility at two different reorganization energies, as a function of electric field and

temperature (given in units of K on the left side of the graph): λ =0.1 eV (empty symbols) and 0.3

eV (filled symbols), obtained from R1|εQ|JQ KMC simulations (see table I for details). Mobilities

are in quantitative and qualitative disagreement with experimental data.

fixed case for transfer integrals has an exact correspondence with the fixed site energies,

in the dynamic case disorder is added on top of the quantum chemistry values, using ran-

dom numbers drawn from a Gaussian distribution with σJ=1.43 meV, corresponding to the

standard deviation of ZINDO values. Finally, for (iv) we ran KMC simulations in which off-

diagonal disorder, that we estimated at TMD =300 K, is assumed to be completely dynamic

and is rescaled to the simulation temperature T using a factor (T/TMD)1/2, according to

the electron-phonon coupling model[42, 64]. Furthermore, the effect of increasing the mean

values of the transfer integral is considered in an average way, by adding the variance to the

square of the QM transfer integrals [65, 66] (JTG conditions). The meaning of the symbols

corresponding to different simulations conditions is detailed in table I.

The limitations of calculating mobilities from small-sized systems, yielding to unreal-

istically high values and excessively broad distributions of single charge velocities, have

been well discussed in the recent literature. [28, 49, 56, 67] Among others, Andrienko and

coworkers[56, 68] underlined the relationship with the calculated mobility dispersion, ener-
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TABLE I. List of symbols utilized for defining the KMC simulations conditions.

Symbol Definition

R1 Original four MD samples (125 sites each)

R2 2×2×2 replica of MD samples (1000 sites)

R3 3×3×3 replica of MD samples (3375 sites)

εQ HOMO energies calculated at ZINDO level at the MD geometry,

static in time with σε=50.2 meV

εG HOMO energies drawn at every KMC step from a Gaussian distribution

with σε=50.2 meV

εSG HOMO energies drawn from a Gaussian distribution at the beginning

of each KMC simulation, with σε=50.2 meV

JQ Electronic couplings fixed at their quantum mechanics value.

JG Electronic couplings fixed at their quantum mechanics value,

+ random fluctuations x extracted at every KMC step from a

Gaussian distribution with σJ=1.43 meV: J = JQ + x

JTQ Electronic couplings augmented according to a temperature-dependent

disorder: J2 = J2
Q + σ2

J · (T/TMD)

getic disorder and sample size in amorphous systems, and showed that for large disorder

values (σε > 3kBT ), only samples containing millions of sites can lead to correct results.

The problem originates from the fact that the thermally accessible, low energy tail of the

density of states, which becomes populated if the charge propagation experiments are ade-

quately long, is not well represented by a discrete distribution of site energies (Figure S5), in

particular if the site energies are fixed in time and the distribution is broad (i.e. the disorder

is high).

In order to alleviate sample size effects and test their importance as a possible cause of

the mismatch with experimental mobilities, we (i) introduced a static energetic disorder by

randomizing the site energies at the beginning of each KMC run, (ii) we performed the

simulations for periodic replicas of the original MD boxes, so as to have a larger number

of sites and then a smoother density of states, and (iii) we calculated mean logarithmic

mobilities as suggested by Bobbert and coworkers.[49] By comparing the simulated mobil-

ities for replicated samples R2 and R3 we first notice that the differences between the two

systems are minimal. In fact for TFB, sample size is not expected to have significant impact

on mobility due to the small energetic disorder present in these systems (σε < 3kBT ) at

every temperature studied. The convergence with system size is confirmed by the similarity

between arithmetic and logarithmic averages (points and lines in figure 3, respectively), and

consequently in the remainder of the article only logarithmic mobilities are reported. More

13



0 100 200 300 400 500 600
E 1/2 (V 1/2/cm1/2)

10-5

10-4

µ
(c
m

2
/V
s)

350

320

295
280

260

240

220

FIG. 3. Simulated mobility of replicated samples as a function of electric field, with randomized

static energetic disorder with σ = 50.2 meV and fixed transfer integrals, for 3 × 3 replicas of the

MD samples (R3|εSG|JQ conditions). Points correspond to arithmetic averages, dashed lines to

logarithmic averages of mobility.

interestingly, by comparing figures 2 and 3, it turns out that the static randomization of site

energies scales down the mobility by a factor of about five. This reduction can be explained

by the removal of (spurious) static correlations between the site energies which is instead

present if εQ values are used; in fact, as shown for instance by Kordt and Andrienko,[69]

uncorrelated disorder generally leads to lower mobilities.

To investigate the existence of spatial correlation in R1|εQ|JQ simulations, we take a closer

look into the mobility anisotropy for one of the four original MD samples (figure 4, filled

symbols). Quite strikingly, there are marked differences among the three directions of ap-

plication of the electric field, which in principle is not expected for an amorphous material.

This behavior can be attributed to the relatively small size of the simulation samples (with

respect to the oligomer size), since a few hopping events are sufficient for a charge to travel

across the whole box. The randomization of site energies (grey-shaded and empty symbols)

seems to fix the issue and improve the validity of transport landscape by yielding to more

isotropic mobility values, albeit two orders of magnitudes lower than the experimental ones
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FIG. 4. Mobility as a function of the magnitude and direction (x, y, z) of the electric field for

a single MD sample, obtained with fixed site energies (filled symbols, R1|εQ|JQ conditions), with

site energies randomized at the beginning of every KMC simulation (empty symbols, R3|εSG|JQ),

or randomized at every KMC step (gray-shaded symbols, R3|εG|JQ).

and decreasing with increasing electric field. The mobilities obtained with frequent random-

ization of site energies (εG) are as expected slightly larger (and more isotropic) than the

ones with static random site energies (εSG),

D. Mobility for dynamic networks

We showed so far that, despite adopting reasonable approximations and parameters, cal-

culated mobilities for static networks substantially differ from the experimental time-of-flight

values. One possible source of error could be the adoption of the semiempirical ZINDO

Hamiltonian in the calculation of the electronic couplings. ZINDO is in fact known to

underestimate the couplings with respect to DFT calculations (which in turn are functional-

dependent[70]), however the scaling factor ranges approximately from one to two depending

on the material[46, 71], which is not sufficient to recover two orders of magnitude in pre-

dicted mobilities. The other possible source of discrepancy with respect to experimental
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observations is the neglect of time fluctuations of the couplings, i.e. the static description

of the percolation network. Cornil and coworkers elegantly showed how including fluctua-

tions in KMC simulations increases the calculated mobility when the average value of the

couplings is smaller than their standard deviation (〈J〉/σJ < 1) [60]. The existence of these

fluctuations, essentially generated by low frequency vibrations and with typical correlation

times in the subpicosecond range, were observed by many authors.[36, 61, 62, 72–74]

It then appears that a sensible approach to introduce dynamic disorder on transfer integrals,

as an effective way of considering small fluctuations of atomic positions around their equi-

librium value, the so-called positional disorder[50]. The electronic couplings calculated from

the four MD samples indeed provide an instantaneous photograph of the network which

magnifies the hindering effects on mobility due to trap sites. In order to improve the realism

of our model, we accordingly reshuffled the transfer integrals at each KMC step by adding

to each ZINDO-calculated coupling a random number extracted from a Gaussian distribu-

tion with σJ = 1.43 meV. It is worth noting that this scheme (JG) (i) assumes that the

correlation time of transfer integral fluctuations is faster than the average hopping time; (ii)

preserves the topology of the network, but allows for a time-dependent probability of the

different pathways; (iii) accounts for the distance dependence of the transfer integrals; (iv)

presumes that spatial fluctuations are a measure of the fluctuations in time, as is expected

for a crystal, and (v) neglects the temperature dependence of the disorder. A more rigorous

way of accounting for dynamic off-diagonal disorder, at least in the framework of Marcus

theory, is to augment all the squared transfer integrals of the dynamic variance[65], and to

consider that this variance is proportional to temperature[42] (JTQ conditions).

In figure 5, left panel, we plot the results of KMC simulations performed on replicated

sample R3, and compare them with the experimental data on the right panel. Clearly, intro-

ducing dynamic fluctuations on the electronic coupling increases significantly the simulated

mobility and is key to improve the agreement with experimental data, which confirms the

importance of including dynamic fluctuations in charge transport studies of amorphous sys-

tems characterized by small values of electronic couplings.

The last step in this systematic review of the KMC simulation parameters concerns the tem-

perature dependence of the positional (off-diagonal) disorder. So far we implicitly made the

assumption of a disorder independent on temperature, but it is worth testing the opposite

case and how much this would affect our conclusions (εSG|JTQ conditions). We see in figure 5
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FIG. 5. Calculated and experimental mobilities as a function of the electric field and at different

temperatures (K units). From the left to the right: static diagonal disorder and dynamic off-

diagonal disorder (R3|εSG|JG); dynamic diagonal disorder and off-diagonal disorder (R3|εG|JG);

temperature-dependent off-diagonal dynamic disorder (R3|εSG|JTQ). On the rightmost panel we show

mobilities from experimental time-of-flight measurements (adapted from references [18] and [16]).

The second set of measurements at 295 K, denoted by a star, is reported for completeness; however

it comes from experiments where an excessive dispersion of the signal was registered, attributed

by the authors to the presence of impurities acting as traps, hypothesis consistent with the large

value of β in table II.[16] The differences between the two measurement could also be originated

by the use of different solvents (toluene[16] vs. trichloroethane[18]).

that the temperature-dependent disorder on transfer integrals does not produce qualitative

changes, since it marginally increases the mobility and the separation between the curves at

different temperatures, improving the agreement with the experimental data from Malliaras

and coworkers.[18] The key factor for recovering the experimental order of magnitude of

mobility and the Poole-Frenkel behavior is indeed the introduction of the fluctuations in the

electronic couplings.

E. Analysis of field and temperature dependence of mobilities

Analytical equations providing relatively simple formulae to fit the variation of mobility

with field and temperature[50], as well as charge density,[51, 75] are often used in the exper-

imental literature, with the double purpose of validating theoretical models and extracting

intrinsic material parameters under the tacit assumption of the validity of the models. Here
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we perform the same exercise using simulated mobilities, in order to compare directly with

the parameters extracted from experiment, and to verify the internal consistency of the

various theories developed to describe charge transport, since some of the microscopic pa-

rameters, and notably the magnitude of the energetic disorder, are known beforehand.

In figure 6 we analyze the temperature dependence of zero field mobilities utilizing either

equation 6, which is appropriate for hopping in a Gaussian density of states (left panel), or

equation 8, typical of an exponential DOS, or of a Gaussian DOS in the presence of extrinsic

charges (right panel).[53] Even if the fitting with the Gaussian disorder model is more accu-

rate as expected, also the Arrhenius equation gives satisfactory results, although not in the

whole temperature range. The two fits produce very different infinite temperature mobilities

(µ∞ � µ′∞ in table II) as a consequence of the different temperature dependence; however,

the apparent energetic disorders σA and activation energies ∆ are rather consistent, with

∆ ' 2σA for all KMC setups and experiments. Changing the reorganization energy from

λ = 200 meV to 300 meV does not alter significantly the activation energy, consistent with

what was reported in reference [76] for oriented polymers and fields perpendicular to the

direction of chain alignment, i.e. inter-chain transport.

The variations of a few meV of σA upon changing the simulation parameters are too small

for drawing conclusions about their origin, but it is interesting to notice that all simulations

produce similar apparent energetic disorder σA, in line with the experimental value of 66

meV, and only slightly larger than the intrinsic energetic disorder σε = 50.2 meV. The most

significant change with KMC conditions, as shown already in figures 2, 4, and 5, occurs to

the infinite temperature mobilities µ∞; in particular the best match with the experiments

of Malliaras et al.[18] is achieved with static diagonal disorder and temperature dependent

off-diagonal disorder (R3|εSG|JTQ). In figures 6 we also plot the zero field mobilities as ob-

tained with R3|εG|JG conditions but with a lower reorganization energy (λ = 0.2 eV, green

pentagons), with the dual objective of demonstrating the robustness of the results versus

the partly arbitrary choice of this parameter, and of showing how the experimental data are

well bracketed by the KMC results with λ = 0.2 and λ = 0.3 eV (red squares).

To conclude our discussion, we focused on the material parameters that are extracted from

fitting the temperature dependence of the Poole-Frenkel factors β with equation 7 (Fig-

ure 7). The analysis could be performed only for some simulation setups because not all

of them showed a Poole-Frenkel behaviour (equation 5); the approach consists in utilizing
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FIG. 6. Temperature dependence of simulated (R3 supercell) and experimental zero field mobilities,

extrapolated with equation 5 for fields ranging from 1502 to 4502 V/cm, and corresponding fitting

lines with equations 6 (left panel) and 8 (right panel). Fitting parameters are reported in table II.

An asterisk∗ indicates simulation results for λ = 0.2 eV; λ = 0.3 eV otherwise.

previously derived σA values in equation 7, obtaining the parameter C from the slope of log β

vs (σA/kBT )2, and finally obtaining the square of the positional disorder ΣA as the intercept

of the fitting line with the x-axis. Figure 7 shows that experiment and simulations follow

closely the behavior predicted by Bässler[50], however the angular coefficient obtained from

simulations is about half the experimental one when site energies are dynamically changed

during KMC (see also Table II). If the diagonal disorder is instead assumed as completely

static, we see indeed in figure 7 and table II that larger values of C are obtained, very close

to the experimental one. The positional disorder parameter ΣA, which is a measure of the

spread of the transfer integrals, shows instead a better overall agreement between exper-

iment and simulations, independently from the details of the KMC algorithm, indicating

that our model adequately captures the physical nature of the actual system.
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FIG. 7. Calculated (R3 supercell) and experimental[18] Poole-Frenkel factors plotted against the

square of reduced diagonal disorder. Dashed lines correspond to least-square fits with equation 7.

Fitting parameters are reported in table II. An asterisk∗ indicates simulation results for λ = 0.2

eV; λ = 0.3 eV otherwise.

TABLE II. Physical parameters extracted by fitting experimental and simulated mobilities with

equations 5, 6, and 7. Mobilities are given in units of cm2/(Vs), σA and ∆ in meV, β and C in

(cm/V)1/2. ΣA is a dimensionless quantity. (a) Quantity determined at T=295 K. (b) Simulation

results for λ = 0.2 eV; λ = 0.3 eV otherwise.

Quantity exp[18] exp[16] R1|εQ|JQ R3|εG|JQ R3|εSG|JG R3|εG|JG R3|εG|J (b)
G R3|εSG|JTQ

µ0 · 103 (a) 9.6 0.31 0.33 0.14 3.1 4.5 14.7 5.9

β · 103 (a) 0.61 3.8 -0.18 -0.62 0.79 0.75 0.77 0.59

µ′∞ · 103 2200 17 46 920 870 1130 1990

∆ 140 - 100 155 149 135 111 154

µ∞ · 103 190 - 2.4 2.5 77 71 130 160

σA 66 - 54 67 71 64 62 69

C · 104 2.8 - - - 3.1 1.3 1.4 3.3

ΣA 2.2 - - - 2.1 1.9 1.9 2.1

20



IV. CONCLUSIONS

We presented a theoretical study of the charge transport properties of TFB fluorene-

triphenylamine copolymer, a system with remarkably high hole mobility among amorphous

organic semiconductors. KMC simulations based on atomistic input, i.e. atomistic molecular

dynamics to build the morphologies and quantum chemistry to extract charge hopping rates,

are employed to calculate the temperature and electric-field dependence of the hole mobility.

Our analysis allows rationalizing why amorphous semi-conducting systems, characterized

by poor intermolecular packing, relatively low energetic disorder, and small charge transfer

integrals, can have reasonably high hole mobility, highlighting the crucial role of dynamic

fluctuations on charge transport. The introduction in the model of dynamic off-diagonal

disorder in fact boosts mobility by two orders of magnitude, allowing the achievement of

an almost quantitative agreement with experimental mobility values, and the recovery of

the so-called Poole-Frenkel behavior of the mobility against the electric field. These results

provide a strong evidence of the importance of dynamic energetic disorder for the effective

simulation of charge transport in amorphous semiconductors, and introduce a relatively

simple and cheap protocol for the computational screening of this class of materials.

SUPPLEMENTARY MATERIAL

See Supplementary Material for a detailed description of the molecular mechanics force

field parametrization; radial and dihedral distributions from MD simulations; distributions

of transfer integrals and site energies; additional mobility vs electric field plots.
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[31] M. Moral, W.-J. Son, J. C. Sancho-Garćıa, Y. Olivier, and L. Muccioli, J. Chem. Theory

Comput. 11, 3383 (2015).

[32] J. C. Phillips, R. Braun, W. Wang, J. s. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D.
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