232 research outputs found

    Pattern selection in a lattice of pulse-coupled oscillators

    Get PDF
    We study spatio-temporal pattern formation in a ring of N oscillators with inhibitory unidirectional pulselike interactions. The attractors of the dynamics are limit cycles where each oscillator fires once and only once. Since some of these limit cycles lead to the same pattern, we introduce the concept of pattern degeneracy to take it into account. Moreover, we give a qualitative estimation of the volume of the basin of attraction of each pattern by means of some probabilistic arguments and pattern degeneracy, and show how are they modified as we change the value of the coupling strength. In the limit of small coupling, our estimative formula gives a perfect agreement with numerical simulations.Comment: 7 pages, 8 figures. To be published in Physical Review

    The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Full text link
    (ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.Comment: 28 pages, 12 figures, accepted for publication in the International Journal of Astrobiolog

    Synchronization, Diversity, and Topology of Networks of Integrate and Fire Oscillators

    Get PDF
    We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time TT in random networks, and find a scaling law which relates TT to networks connectivity. Then, we carry on comparing synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than any other disordered network. The fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to have a non-random topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.Comment: 6 pages, 8 figures, LaTeX 209, uses RevTe

    Ultrarelativistic black hole in an external electromagnetic field and gravitational waves in the Melvin universe

    Full text link
    We investigate the ultrarelativistic boost of a Schwarzschild black hole immersed in an external electromagnetic field, described by an exact solution of the Einstein-Maxwell equations found by Ernst (the ``Schwarzschild-Melvin'' metric). Following the classical method of Aichelburg and Sexl, the gravitational field generated by a black hole moving ``with the speed of light'' and the transformed electromagnetic field are determined. The corresponding exact solution describes an impulsive gravitational wave propagating in the static, cylindrically symmetric, electrovac universe of Melvin, and for a vanishing electromagnetic field it reduces to the well known Aichelburg-Sexl pp-wave. In the boosting process, the original Petrov type I of the Schwarzschild-Melvin solution simplifies to the type II on the impulse, and to the type D elsewhere. The geometry of the wave front is studied, in particular its non-constant Gauss curvature. In addition, a more general class of impulsive waves in the Melvin universe is constructed by means of a six-dimensional embedding formalism adapted to the background. A coordinate system is also presented in which all the impulsive metrics take a continuous form. Finally, it is shown that these solutions are a limiting case of a family of exact gravitational waves with an arbitrary profile. This family is identified with a solution previously found by Garfinkle and Melvin. We thus complement their analysis, in particular demonstrating that such spacetimes are of type II and belong to the Kundt class.Comment: 11 pages, REVTeX

    Dynamics of systems with isotropic competing interactions in an external field: a Langevin approach

    Full text link
    We study the Langevin dynamics of a ferromagnetic Ginzburg-Landau Hamiltonian with a competing long-range repulsive term in the presence of an external magnetic field. The model is analytically solved within the self consistent Hartree approximation for two different initial conditions: disordered or zero field cooled (ZFC), and fully magnetized or field cooled (FC). To test the predictions of the approximation we develop a suitable numerical scheme to ensure the isotropic nature of the interactions. Both the analytical approach and the numerical simulations of two-dimensional finite systems confirm a simple aging scenario at zero temperature and zero field. At zero temperature a critical field hch_c is found below which the initial conditions are relevant for the long time dynamics of the system. For h<hch < h_c a logarithmic growth of modulated domains is found in the numerical simulations but this behavior is not captured by the analytical approach which predicts a t1/2t^1/2 growth law at T=0T = 0

    Dynamical coupled-channel approaches on a momentum lattice

    Get PDF
    Dynamical coupled-channel approaches are a widely used tool in hadronic physics that allow to analyze different reactions and partial waves in a consistent way. In such approaches the basic interactions are derived within an effective Lagrangian framework and the resulting pseudo-potentials are then unitarized in a coupled-channel scattering equation. We propose a scheme that allows for a solution of the arising integral equation in discretized momentum space for periodic as well as twisted boundary conditions. This permits to study finite size effects as they appear in lattice QCD simulations. The new formalism, at this stage with a restriction to S-waves, is applied to coupled-channel models for the sigma(600), f0(980), and a0(980) mesons, and also for the Lambda(1405) baryon. Lattice spectra are predicted.Comment: 7 pages, 4 figure

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Neutrino masses: From fantasy to facts

    Get PDF
    Theory suggests the existence of neutrino masses, but little more. Facts are coming close to reveal our fantasy: solar and atmospheric neutrino data strongly indicate the need for neutrino conversions, while LSND provides an intriguing hint. The simplest ways to reconcile these data in terms of neutrino oscillations invoke a light sterile neutrino in addition to the three active ones. Out of the four neutrinos, two are maximally-mixed and lie at the LSND scale, while the others are at the solar mass scale. These schemes can be distinguished at neutral-current-sensitive solar & atmospheric neutrino experiments. I discuss the simplest theoretical scenarios, where the lightness of the sterile neutrino, the nearly maximal atmospheric neutrino mixing, and the generation of Δm2\Delta {m^2}_\odot & Δm2atm\Delta {m^2}_{atm} all follow naturally from the assumed lepton-number symmetry and its breaking. Although the most likely interpretation of the present data is in terms of neutrino-mass-induced oscillations, one still has room for alternative explanations, such as flavour changing neutrino interactions, with no need for neutrino mass or mixing. Such flavour violating transitions arise in theories with strictly massless neutrinos, and may lead to other sizeable flavour non-conservation effects, such as μe+γ\mu \to e + \gamma, μe\mu-e conversion in nuclei, unaccompanied by neutrino-less double beta decay.Comment: 33 pages, latex, 16 figures. Invited Talk at Ioannina Conference, Symmetries in Intermediate High Energy Physics and its Applications, Oct. 1998, to be published by Springer Tracts in Modern Physics. Festschrift in Honour of John Vergados' 60th Birthda

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure
    corecore