9 research outputs found

    Development of enteric coated sustained release minitablets containing mesalamine

    Get PDF
    The aim of this study was to develop and evaluate a multiparticulate modified release system, composed of minitablets with a sustained release matrix system coated with a pH-dependent release polymer, using mesalamine as a model drug. Polyox® WSR 1105 was the polymer used in the matrix system and Eudragit® L30D55 was used as a pH-dependent polymer. The minitablets (with 20%, 30% or 40% Polyox® concentration) were prepared by dry granulation, which led to good quality minitablets. The developed minitablets were coated in a fluidized bed at 8% of the coating level. Dissolution studies were performed in media that simulated the gastrointestinal tract (pH 1.4, 6.0 and 7.2) and showed that formulations with higher Polyox® concentrations were capable of retaining the drug release in pH 1.4. All formulations prolonged the drug release and presented zero-order kinetic behaviour. The Korsmeyer-Peppas model demonstrated that formulations with 20% or 30% of polymer exhibited anomalous transport behaviour, whilst the 40% sample exhibited super case II model transportation. Dissolution efficiency showed that only the formulations containing 20% and 40% polymer could be considered statistically different

    The MICADO first light imager for the ELT: overview, operation, simulation

    No full text
    International audienceMICADO will enable the ELT to perform diffraction limited near-infrared observations at first light. The instrument's capabilities focus on imaging (including astrometric and high contrast) as well as single object spectroscopy. This contribution looks at how requirements from the observing modes have driven the instrument design and functionality. Using examples from specific science cases, and making use of the data simulation tool, an outline is presented of what we can expect the instrument to achieve

    Need for harmonized long-term multi-lake monitoring of African Great Lakes

    No full text
    To ensure the long-term sustainable use of African Great Lakes (AGL), and to better understand the functioning of these ecosystems, authorities, managers and scientists need regularly collected scientific data and information of key environmental indicators over multi-years to make informed decisions. Monitoring is regularly conducted at some sites across AGL; while at others sites, it is rare or conducted irregularly in response to sporadic funding or short-term projects/studies. Managers and scientists working on the AGL thus often lack critical long-term data to evaluate and gauge ongoing changes. Hence, we propose a multi-lake approach to harmonize data collection modalities for better understanding of regional and global environmental impacts on AGL. Climate variability has had strong impacts on all AGL in the recent past. Although these lakes have specific characteristics, their limnological cycles show many similarities. Because different anthropogenic pressures take place at the different AGL, harmonized multi-lake monitoring will provide comparable data to address the main drivers of concern (climate versus regional anthropogenic impact). To realize harmonized long-term multi-lake monitoring, the approach will need: (1) support of a wide community of researchers and managers; (2) political goodwill towards a common goal for such monitoring; and (3) sufficient capacity (e.g., institutional, financial, human and logistic resources) for its implementation. This paper presents an assessment of the state of monitoring the AGL and possible approaches to realize a long-term, multi-lake harmonized monitoring strategy. Key parameters are proposed. The support of national and regional authorities is necessary as each AGL crosses international boundaries

    Electron Microscopy

    No full text
    corecore