332 research outputs found

    In vivo imaging of trypanosomes for a better assessment of host–parasite relationships and drug efficacy

    Get PDF
    AbstractThe advances in microscopy combined to the invaluable progress carried by the utilization of molecular, immunological or immunochemical markers and the implementation of more powerful imaging technologies have yielded great improvements to the knowledge of the interaction between microorganisms and their hosts, notably a better understanding of the establishment of infectious processes. Still today, the intricacies of the dialog between parasites, cells and tissues remain limited. Some improvements have been attained with the stable integration and expression of the green fluorescence protein or firefly luciferase and other reporter genes, which have allowed to better approach the monitoring of gene expression and protein localization in vivo, in situ and in real time. Aiming at better exploring the well-established models of murine infections with the characterized strains of Trypanosoma cruzi and Trypanosoma vivax, we revisited in the present report the state of the art about the tools for the imaging of Trypanosomatids in vitro and in vivo and show the latest transgenic parasites that we have engineered in our laboratory using conventional transfection methods. The targeting of trypanosomes presented in this study is a promising tool for approaching the biology of parasite interactions with host cells, the progression of the diseases they trigger and the screening of new drugs in vivo or in vitro

    Modulatory Effects of Polyphenols on Apoptosis Induction: Relevance for Cancer Prevention

    Get PDF
    Polyphenols, occurring in fruit and vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products, have been demonstrated to have clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. However, it has become clear that, in complex biological systems, polyphenols exhibit several additional properties which are yet poorly understood. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the normal embryonic development and for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathological processes, since too little or too much apoptosis can lead to proliferative or degenerative diseases, respectively. Cancer cells are characterized by a deregulated proliferation, and/or an inability to undergo programmed cell death. A large body of evidence indicates that polyphenols can exert chemopreventive effects towards different organ specific cancers, affecting the overall process of carcinogenesis by several mechanisms: inhibition of DNA synthesis, modulation of ROS production, regulation of cell cycle arrest, modulation of survival/proliferation pathways. In addition, polyphenols can directly influence different points of the apoptotic process, and/or the expression of regulatory proteins. Although the bulk of data has been obtained in in vitro systems, a number of clinical studies suggesting a preventive and therapeutic effectiveness of polyphenols in vivo is available. However, a deeper knowledge of the underlying mechanisms responsible for the modulation of apoptosis by polyphenols, and their real effectiveness, is necessary in order to propose them as potential chemopreventive and chemotherapeutic candidates for cancer treatment

    Synthesis of hydrophilic carbon nanotube sponge via post-growth thermal treatment

    Get PDF
    Clean water is vital for healthy ecosystems, for human life and, in a broader sense, it is directly linked to our socio-economic development. Nevertheless, climate change, pollution and increasing world population will likely make clean water scarcer in the near future. Consequently, it becomes imperative to develop novel materials and more efficient ways of treating waste and contaminated water. Carbon nanotube (CNT) sponges, for example, are excellent in removing oleophilic contaminants; however, due to their super-hydrophobic nature, they are not as efficient when it comes to absorbing water-soluble substances. Here, by means of a scalable method consisting of simply treating CNT sponges at mild temperatures in air, we attach oxygen-containing functional groups to the CNT surface. The functionalized sponge becomes hydrophilic while preserving its micro- and macro-structure and can therefore be used to successfully remove toxic contaminants, such as pesticides, that are dissolved in water. This discovery expands the current range of applications of CNT sponges to those fields in which a hydrophilic character of the sponge is more suitable

    Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex.

    Get PDF
    Kinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite of universal function, the composition of kinetochores in extant eukaryotes differs greatly. In trypanosomes and other Kinetoplastida, kinetochores are extremely divergent, with most components showing no detectable similarity to proteins in other systems. They may also be very different functionally, potentially binding to the spindle directly via an inner-kinetochore protein. However, we do not know the extent of the trypanosome kinetochore, and proteins interacting with a highly divergent Ndc80/Nuf2-like protein (KKIP1) suggest the existence of more centromere-distal complexes. Here we use quantitative proteomics from multiple start-points to define a stable 9-protein kinetoplastid outer kinetochore (KOK) complex. This complex incorporates proteins recruited from other nuclear processes, exemplifying the role of moonlighting proteins in kinetochore evolution. The outer kinetochore complex is physically distinct from inner-kinetochore proteins, but nanometer-scale label separation shows that KKIP1 bridges the two plates in the same orientation as Ndc80. Moreover, KKIP1 exhibits substantial elongation at metaphase, altering kinetochore structure in a manner consistent with pulling at the outer plate. Together, these data suggest that the KKIP1/KOK likely constitute the extent of the trypanosome outer kinetochore and that this assembly binds to the spindle with sufficient strength to stretch the kinetochore, showing design parallels may exist in organisms with very different kinetochore composition

    The Cyclical Development of Trypanosoma vivax in the Tsetse Fly Involves an Asymmetric Division

    Get PDF
    International audienceTrypanosoma vivax is the most prevalent trypanosome species in African cattle. It is thought to be transmitted by tsetse flies after cyclical development restricted to the vector mouthparts. Here, we investigated the kinetics of T. vivax development in Glossina morsitans morsitans by serial dissections over 1 week to reveal differentiation and proliferation stages. After 3 days, stable numbers of attached epimastigotes were seen proliferating by symmetric division in the cibarium and proboscis, consistent with colonization and maintenance of a parasite population for the remaining lifespan of the tsetse fly. Strikingly, some asymmetrically dividing cells were also observed in proportions compatible with a continuous production of pre-metacyclic trypomastigotes. The involvement of this asymmetric division in T. vivax metacyclogenesis is discussed and compared to other trypanosomatids

    (2E)-2-Benzyl­idene-5,6-dimethoxy­indan-1-one

    Get PDF
    The mol­ecular structure of the title compound, C18H16O3, is roughly planar; the maximum deviation of the indanone ring system is 0.027 (1) Å and it makes a dihedral angle of 2.69 (3)° with the phenyl ring. The torsion angles between the two meth­oxy groups and the ­indanone ring are −14.67 (11) and −1.11 (12)°. In the crystal, mol­ecules are connected into a ribbon along the a axis via weak inter­molecular C—H⋯O hydrogen bonds. Weak inter­molecular C—H⋯π and π–π [centroid–centroid distance = 3.7086 (6) Å] inter­actions are also observed

    Reliable, scalable functional genetics in bloodstream-form Trypanosoma congolense in vitro and in vivo.

    Get PDF
    Animal African trypanosomiasis (AAT) is a severe, wasting disease of domestic livestock and diverse wildlife species. The disease in cattle kills millions of animals each year and inflicts a major economic cost on agriculture in sub-Saharan Africa. Cattle AAT is caused predominantly by the protozoan parasites Trypanosoma congolense and T. vivax, but laboratory research on the pathogenic stages of these organisms is severely inhibited by difficulties in making even minor genetic modifications. As a result, many of the important basic questions about the biology of these parasites cannot be addressed. Here we demonstrate that an in vitro culture of the T. congolense genomic reference strain can be modified directly in the bloodstream form reliably and at high efficiency. We describe a parental single marker line that expresses T. congolense-optimized T7 RNA polymerase and Tet repressor and show that minichromosome loci can be used as sites for stable, regulatable transgene expression with low background in non-induced cells. Using these tools, we describe organism-specific constructs for inducible RNA-interference (RNAi) and demonstrate knockdown of multiple essential and non-essential genes. We also show that a minichromosomal site can be exploited to create a stable bloodstream-form line that robustly provides >40,000 independent stable clones per transfection-enabling the production of high-complexity libraries of genome-scale. Finally, we show that modified forms of T. congolense are still infectious, create stable high-bioluminescence lines that can be used in models of AAT, and follow the course of infections in mice by in vivo imaging. These experiments establish a base set of tools to change T. congolense from a technically challenging organism to a routine model for functional genetics and allow us to begin to address some of the fundamental questions about the biology of this important parasite

    Characteristics of COVID-19 cases in Italy from a sex/gender perspective

    Get PDF
    Introduction: Coronavirus disease 19 (COVID-19) is an infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To date, few data on clinical features and risk factors for disease severity and death by gender are available. Aim: The current study aims to describe from a sex/gender perspective the characteristics of the SARS-CoV-2 cases occurred in the Italian population from February 2020 until October 2021. Method and results: We used routinely collected data retrieved from the Italian National Surveillance System. The highest number of cases occurred among women between 40 and 59 years, followed by men in the same age groups. The proportion of deaths due to COVID-19 was higher in men (56.46%) compared to women (43.54%). Most of the observed deaths occurred in the elderly. Considering the age groups, the clinical outcomes differed between women and men in particular in cases over 80 years of age; with serious or critical conditions more frequent in men than in women. Conclusions: Our data clearly demonstrate a similar number of cases in women and men, but with more severe disease and outcome in men, thus confirming the importance to analyse the impact of sex and gender in new and emerging diseases

    Proteomic Analysis of the Cell Cycle of Procylic FormTrypanosoma brucei

    Get PDF
    We describe a single-step centrifugal elutriation method to produce synchronous G1-phase procyclic trypanosomes at a scale amenable for proteomic analysis of the cell cycle. Using ten-plex tandem mass tag (TMT) labelling and mass spectrometry (MS)-based proteomics technology, the expression levels of 5,325 proteins were quantified across the cell cycle in this parasite. Of these, 384 proteins were classified as cell-cycle regulated and subdivided into nine clusters with distinct temporal regulation. These groups included many known cell cycle regulators in trypanosomes, which validates the approach. In addition, we identify 40 novel cell cycle regulated proteins that are essential for trypanosome survival and thus represent potential future drug targets for the prevention of trypanosomiasis. Through cross-comparison to the TrypTag endogenous tagging microscopy database, we were able to validate the cell-cycle regulated patterns of expression for many of the proteins of unknown function detected in our proteomic analysis. A convenient interface to access and interrogate these data is also presented, providing a useful resource for the scientific community. Data are available via ProteomeXchange with identifier PXD008741

    Transcriptome Profiles of Human Visceral Adipocytes in Obesity and Colorectal Cancer Unravel the Effects of Body Mass Index and Polyunsaturated Fatty Acids on Genes and Biological Processes Related to Tumorigenesis

    Get PDF
    Obesity, a low-grade inflammatory condition, represents a major risk factor for the development of several pathologies including colorectal cancer (CRC). Although the adipose tissue inflammatory state is now recognized as a key player in obesity-associated morbidities, the underlying biological processes are complex and not yet precisely defined. To this end, we analyzed transcriptome profiles of human visceral adipocytes from lean and obese subjects affected or not by CRC by RNA sequencing (n = 6 subjects/category), and validated selected modulated genes by real-time qPCR. We report that obesity and CRC, conditions characterized by the common denominator of inflammation, promote changes in the transcriptional program of adipocytes mostly involving pathways and biological processes linked to extracellular matrix remodeling, and metabolism of pyruvate, lipids and glucose. Interestingly, although the transcriptome of adipocytes shows several alterations that are common to both disorders, some modifications are unique under obesity (e.g., pathways associated with inflammation) and CRC (e.g., TGFβ signaling and extracellular matrix remodeling) and are influenced by the body mass index (e.g., processes related to cell adhesion, angiogenesis, as well as metabolism). Indeed, cancer-induced transcriptional program is deeply affected by obesity, with adipocytes from obese individuals exhibiting a more complex response to the tumor. We also report that in vitro exposure of adipocytes to ω3 and ω6 polyunsaturated fatty acids (PUFA) endowed with either anti- or pro-inflammatory properties, respectively, modulates the expression of genes involved in processes potentially relevant to carcinogenesis, as assessed by real-time qPCR. All together our results suggest that genes involved in pyruvate, glucose and lipid metabolism, fibrosis and inflammation are central in the transcriptional reprogramming of adipocytes occurring in obese and CRC-affected individuals, as well as in their response to PUFA exposure. Moreover, our results indicate that the transcriptional program of adipocytes is strongly influenced by the BMI status in CRC subjects. The dysregulation of these interrelated processes relevant for adipocyte functions may contribute to create more favorable conditions to tumor establishment or favor tumor progression, thus linking obesity and colorectal cancer
    corecore