934 research outputs found

    The many masks of focal segmental glomerulosclerosis

    Get PDF

    Infantile nephropathic cystinosis

    Get PDF

    The neurobiological basis of ADHD

    Get PDF
    Attention-Deficit/Hyperactivity Disorder is not a single pathophysiological entity and appears to have a complex etiology. There are multiple genetic and environmental risk factors with small individual effect that act in concert to create a spectrum of neurobiological liability. Structural imaging studies show that brains of children with Attention-Deficit/Hyperactivity Disorder are significantly smaller than unaffected controls. The prefrontal cortex, basal ganglia and cerebellum are differentially affected and evidence indicating reduced connectivity in white matter tracts in key brain areas is emerging. Genetic, pharmacological, imaging, and animal models highlight the important role of dopamine dysregulation in the neurobiology of Attention-Deficit/Hyperactivity Disorder. To date, stimulants are the most effective psychopharmacological treatments available for Attention-Deficit/Hyperactivity Disorder. Currently only immediate release methylphenidate and atomoxetine are approved for the treatment of ADHD in Italy. Drug treatment should always be part of a comprehensive plan that includes psychosocial, behavioural and educational advice and interventions

    New developments in the genetics, pathogenesis, and therapy of IgA nephropathy

    Get PDF
    Recent years have brought notable progress in the field of IgA nephropathy. Here, we highlight important new directions and latest developments, including successful discovery of several genetic susceptibility loci, formulation of the multihit pathogenesis model, introduction of the Oxford pathology scoring system, and formalization of the Kidney Disease Improving Global Outcomes (KDIGO) consensus treatment guidelines. We focus on the latest genetic findings that confirm a strong contribution of inherited factors and explain some of the geoethnic disparities in disease susceptibility. Most IgA nephropathy susceptibility loci discovered to date encode genes involved in the maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The concerted pattern of interpopulation allelic differentiation across all genetic loci parallels the disease prevalence and correlates with variation in local pathogens, suggesting that multilocus adaptation might have shaped the present-day landscape of IgA nephropathy. Importantly, the 'Intestinal Immune Network for IgA Production' emerged as one of the new targets for potential therapeutic intervention. We place these findings in the context of the multihit pathogenesis model and existing knowledge of IgA immunobiology. Lastly, we provide our perspective on the existing treatment options, discuss areas of clinical uncertainty, and outline ongoing clinical trials and translational studies.Kidney International advance online publication, 16 September 2015; doi:10.1038/ki.2015.252

    Collapsing glomerulopathy in sickle cell disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Sickle cell disease has been associated with many renal structural and functional abnormalities. Collapsing glomerulopathy or the collapsing variant of focal segmental glomerulosclerosis is a rare clinicopathologic entity in patients with sickle cell disease that requires timely diagnosis and aggressive management.</p> <p>Case presentation</p> <p>In this case report we describe a 21-year-old African-American woman with a medical history of significant sickle cell disease and asthma. She was admitted for pain, decreased urine output, bilateral leg swelling and reported weight gain. During her period of hospitalisation she developed acute renal failure requiring dialysis. Further investigation revealed the collapsing variant of focal segmental glomerulosclerosis.</p> <p>Conclusions</p> <p>Although focal segmental glomerulosclerosis is a common feature of sickle cell nephropathy, the collapsing variant of focal segmental glomerulosclerosis or collapsing glomerulopathy has been rarely documented. Even when other risk factors are controlled, collapsing glomerulopathy has a very poor prognosis. This is a rare case of a patient with massive proteinuria presenting as acute renal failure with a very poor response to corticosteroids and a much faster rate of progression to end-stage renal disease.</p

    Atypical neural responses to vocal anger in attention-deficit/hyperactivity disorder

    Get PDF
    Background Deficits in facial emotion processing, reported in attention-deficit/hyperactivity disorder (ADHD), have been linked to both early perceptual and later attentional components of event-related potentials (ERPs). However, the neural underpinnings of vocal emotion processing deficits in ADHD have yet to be characterised. Here, we report the first ERP study of vocal affective prosody processing in ADHD. Methods Event-related potentials of 6–11-year-old children with ADHD (n = 25) and typically developing controls (n = 25) were recorded as they completed a task measuring recognition of vocal prosodic stimuli (angry, happy and neutral). Audiometric assessments were conducted to screen for hearing impairments. Results Children with ADHD were less accurate than controls at recognising vocal anger. Relative to controls, they displayed enhanced N100 and attenuated P300 components to vocal anger. The P300 effect was reduced, but remained significant, after controlling for N100 effects by rebaselining. Only the N100 effect was significant when children with ADHD and comorbid conduct disorder (n = 10) were excluded. Conclusion This study provides the first evidence linking ADHD to atypical neural activity during the early perceptual stages of vocal anger processing. These effects may reflect preattentive hyper-vigilance to vocal anger in ADHD
    • …
    corecore