125 research outputs found
X-ray observations and mass determinations in the cluster of galaxies Cl0024+17
We present a detailed analysis of the mass distribution in the rich and
distant cluster of galaxies Cl0024+17. X-ray data come from both a deep
ROSAT/HRI image of the field (Bohringer et al. 1999) and ASCA spectral data.
Using a wide field CCD image of the cluster, we optically identify all the
faint X-ray sources, whose counts are compatible with deep X-ray number counts.
In addition we marginally detect the X-ray counter-part of the gravitational
shear perturbation detected by Bonnet et al. (1994) at a 2.5 level. A
careful spectral analysis of ASCA data is also presented. In particular, we
extract a low resolution spectrum of the cluster free from the contamination by
a nearby point source located 1.2 arcmin from the center. The X-ray temperature
deduced from this analysis is keV at the 90%
confidence level. The comparison between the mass derived from a standard X-ray
analysis and from other methods such as the Virial Theorem or the gravitational
lensing effect lead to a mass discrepancy of a factor 1.5 to 3. We discuss all
the possible sources of uncertainties in each method of mass determination and
give some indications on the way to reduce them. A complementary study of
optical data is in progress and may solve the X-ray/optical discrepancy through
a better understanding of the dynamics of the cluster.Comment: Revised version, accepted in Astronomy and Astrophysics (Main
Journal). Few changes in the discussio
The Rate of Type Ia Supernovae at High Redshift
We derive the rates of Type Ia supernovae (SNIa) over a wide range of
redshifts using a complete sample from the IfA Deep Survey. This sample of more
than 100 SNIa is the largest set ever collected from a single survey, and
therefore uniquely powerful for a detailed supernova rate (SNR) calculation.
Measurements of the SNR as a function of cosmological time offer a glimpse into
the relationship between the star formation rate (SFR) and Type Ia SNR, and may
provide evidence for the progenitor pathway. We observe a progressively
increasing Type Ia SNR between redshifts z~0.3-0.8. The Type Ia SNR
measurements are consistent with a short time delay (t~1 Gyr) with respect to
the SFR, indicating a fairly prompt evolution of SNIa progenitor systems. We
derive a best-fit value of SFR/SNR 580 h_70^(-2) M_solar/SNIa for the
conversion factor between star formation and SNIa rates, as determined for a
delay time of t~1 Gyr between the SFR and the Type Ia SNR. More complete
measurements of the Type Ia SNR at z>1 are necessary to conclusively determine
the SFR--SNR relationship and constrain SNIa evolutionary pathways.Comment: 37 pages, 9 figures, accepted for publication in Astrophysical
Journal. Figures 7-9 correcte
Exact gravitational lensing and rotation curve
Based on the geodesic equation in a static spherically symmetric metric we
discuss the rotation curve and gravitational lensing. The rotation curve
determines one function in the metric without assuming Einstein's equations.
Then lensing is considered in the weak field approximation of general
relativity. From the null geodesics we derive the lensing equation and
corrections to it.Comment: 12 pages, 1 figur
The X-shooter Lens Survey - II. Sample presentation and spatially resolved kinematics
We present the X-shooter Lens Survey (XLENS) data. The main goal of XLENS is
to disentangle the stellar and dark matter content of massive early-type
galaxies (ETGs), through combined strong gravitational lensing, dynamics and
spectroscopic stellar population studies. The sample consists of 11 lens
galaxies covering the redshift range from to and having stellar
velocity dispersions between and . All
galaxies have multi-band, high-quality HST imaging. We have obtained long-slit
spectra of the lens galaxies with X-shooter on the VLT. We are able to
disentangle the dark and luminous mass components by combining lensing and
extended kinematics data-sets, and we are also able to precisely constrain
stellar mass-to-light ratios and infer the value of the low-mass cut-off of the
IMF, by adding spectroscopic stellar population information. Our goal is to
correlate these IMF parameters with ETG masses and investigate the relation
between baryonic and non-baryonic matter during the mass assembly and structure
formation processes. In this paper we provide an overview of the survey,
highlighting its scientific motivations, main goals and techniques. We present
the current sample, briefly describing the data reduction and analysis process,
and we present the first results on spatially resolved kinematics.Comment: Accepted for publication in MNRA
GaBoDS: The Garching-Bonn Deep Survey - III. Lyman-Break Galaxies in the Chandra Deep Field South
We present first results of our search for high-redshift galaxies in deep CCD
mosaic images. As a pilot study for a larger survey, very deep images of the
Chandra Deep Field South (CDFS), taken withWFI@MPG/ESO2.2m, are used to select
large samples of 1070 U-band and 565 B-band dropouts with the Lyman-break
method. The data of these Lyman-break galaxies are made public as an electronic
table. These objects are good candidates for galaxies at z~3 and z~4 which is
supported by their photometric redshifts. The distributions of apparent
magnitudes and the clustering properties of the two populations are analysed,
and they show good agreement to earlier studies. We see no evolution in the
comoving clustering scale length from z~3 to z~4. The techniques presented here
will be applied to a much larger sample of U-dropouts from the whole survey in
near future.Comment: 11 pages, 11 figures, replaced with version accepted by A&A. Minor
changes and tabular appendix with LBG catalogues. Version with full
resolution figures available at
http://www.astro.uni-bonn.de/~hendrik/2544.pd
The strong transformation of spiral galaxies infalling into massive clusters at z~0.2
We describe two peculiar galaxies falling into the massive galaxy clusters Abell 1689 (z~0.18) and 2667 (z~0.23) respectively. Hubble Space Telescope images show extraordinary trails composed of bright blue knots (-16.5<M<-11.5 mag) and stellar streams associated with each of these systems. Combining optical, near and mid-infrared and radio observations we prove that while both galaxies show similar extended trails of star-forming knots, their recent star formation histories are different. One (~L*) is experiencing a strong burst of star formation, appearing as a rare example of a luminous infrared cluster galaxy. In comparison, the other (~ 0.1 L*) has recently ceased its star formation activity. Our model suggests that the morphologies and star formation in these galaxies have been influenced by the combined action of tidal interaction (likely with the cluster potential) and of ram pressure with the intracluster medium. These results can be used to gain more insights to the origin of S0s, dwarf and ultra-compact dwarf (UCD) cluster galaxies
A wide-field spectroscopic survey of the cluster of galaxies Cl0024+1654: I. The catalogue
We present the catalogue of a wide-field CFHT/WHT spectroscopic survey of the
lensing cluster Cl0024+1654 at z=0.395. This catalogue contains 618 new
spectra, of which 581 have identified redshifts. Adding redshifts available
from the literature, the final catalogue contains data for 687 objects with
redshifts identified for 650 of them. 295 galaxies have redshifts in the range
0.37<z<0.41, i. e. are cluster members or lie in the immediate neighbourhood of
the cluster. The area covered by the survey is 21x25 arcmin2 in size,
corresponding to 4x4.8 h^-2 Mpc2 at the cluster redshift. The survey is 45%
complete down to V=22 over the whole field covered; within 3 arcmin of the
cluster centre the completeness exceeds 80% at the same magnitude. A detailed
completeness analysis is presented. The catalogue gives astrometric position,
redshift, V magnitude and V-I colour, as well as the equivalent widths for a
number of lines. Apart from the cluster Cl0024+1654 itself, three other
structures are identified in redshift space: a group of galaxies at z=0.38,
just in front of Cl0024+1654 and probably interacting with it, a close pair of
groups of galaxies at z~0.495 and an overdensity of galaxies at z~0.18 with no
obvious centre. The spectroscopic catalogue will be used to trace the
three-dimensional structure of the cluster Cl0024+1654 as well as study the
physical properties of the galaxies in the cluster and in its environment.Comment: 14 pages - figures included - A&A (re)submitted versio
A statistical study of multiply-imaged systems in the lensing cluster Abell 68
We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at z=5.4 . Redshifts have been determined for 5 out of 7 multiply-image systems. Through a careful modeling of the mass distribution in the strongly-lensed regime, we derive a mass estimate of 5.3 x 10^14 Msun within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply-imaged and singly-imaged sources. This enables us to examine the physical properties for a subsample of 7 Lyman-alpha emitters at 1.7 < z < 5.5, whose unlensed luminosities of ~ 10^41 ergs/s are fainter than similar objects found in blank fields. Of particular interest is an extended Lyman-alpha emission region surrounding a highly magnified source at z=2.6, detected in VIMOS Integral Field Spectroscopy data. The physical scale of the most distant lensed source at z=5.4 is very small (<300 pc), similar to the lensed z ~ 5.6 emitter reported by Ellis et al. (2001) in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the z ~ 2-5 Lyman-alpha luminosity function in a manner that is complementary to blank field narrow-band surveys
CLASH-VLT: The stellar mass function and stellar mass density profile of the z=0.44 cluster of galaxies MACS J1206.2-0847
Context. The study of the galaxy stellar mass function (SMF) in relation to
the galaxy environment and the stellar mass density profile, rho(r), is a
powerful tool to constrain models of galaxy evolution. Aims. We determine the
SMF of the z=0.44 cluster of galaxies MACS J1206.2-0847 separately for passive
and star-forming (SF) galaxies, in different regions of the cluster, from the
center out to approximately 2 virial radii. We also determine rho(r) to compare
it to the number density and total mass density profiles. Methods. We use the
dataset from the CLASH-VLT survey. Stellar masses are obtained by SED fitting
on 5-band photometric data obtained at the Subaru telescope. We identify 1363
cluster members down to a stellar mass of 10^9.5 Msolar. Results. The whole
cluster SMF is well fitted by a double Schechter function. The SMFs of cluster
SF and passive galaxies are statistically different. The SMF of the SF cluster
galaxies does not depend on the environment. The SMF of the passive population
has a significantly smaller slope (in absolute value) in the innermost (<0.50
Mpc), highest density cluster region, than in more external, lower density
regions. The number ratio of giant/subgiant galaxies is maximum in this
innermost region and minimum in the adjacent region, but then gently increases
again toward the cluster outskirts. This is also reflected in a decreasing
radial trend of the average stellar mass per cluster galaxy. On the other hand,
the stellar mass fraction, i.e., the ratio of stellar to total cluster mass,
does not show any significant radial trend. Conclusions. Our results appear
consistent with a scenario in which SF galaxies evolve into passive galaxies
due to density-dependent environmental processes, and eventually get destroyed
very near the cluster center to become part of a diffuse intracluster medium.Comment: A&A accepted, 15 pages, 13 figure
- …
