95 research outputs found

    Quality of life in orthodontic cancer survivor patients : a prospective casecontrol study

    Get PDF
    Background: The aim of the study was to compare the quality of life (QoL) of cancer survivors with a control group of healthy subjects before, during, and after the orthodontic treatment. Methods: Consecutive cancer survivors (40 people) who were looking for orthodontic treatment between 2008 and 2015 were enrolled into the study. Healthy orthodontic patients matched for age (±4 years), sex, and malocclusion served as controls. The 14-item version of the Oral Health Impact Profile was used to assess the effect of orthodontic treatment on QoL before, during, and after the orthodontic treatment. Results: There were no significant differences between both groups regarding the cast model, cephalometric analysis, and photographic documentation analysis. There was a significant worsening of QoL after the onset of the orthodontic treatment with a significant improvement after the treatment. Male cancer survivor patients reported significantly lower QoL during the treatment time, which was not observed in the male control group. Conclusions: The outcome of orthodontic treatment in cancer survivors did not differ from the healthy orthodontic patients. The orthodontic treatment had an impact on the oral health quality of life both in the cancer and the control groups with a significantly higher impact in male cancer survivor patients

    Confocal laser scanning microscopy for the study of the morphological changes of the postextraction sites

    Full text link
    A better understanding of the remodeling process of postextraction sockets is essential in dental treatment planning. The aim of this study was to evaluate whether confocal laser scanning microscopy (CLSM) can be applied to imaging contour changes of postextraction sites, as well as to its quantification with image analysis of obtained three-dimensional images. This work describes a new application of the CLSM technique. The system used was the OLS3100-USS, LEXT model (Olympus((R))). CLSM was used for the surface analysis of the extraction site. The measurements taken with CLSM were: (1) mesio-distal distance, (2) alveolar ridge thickness, and (3) vestibular and lingual alveolar ridge height. Results of study cast scanning at baseline, 1 and 3 months after tooth extraction, with CLSM are well-detailed images of postextraction areas. The CLSM technique used in study casts is a valid method to measure the dimensional changes that happen in the edentulous area after tooth extraction. This technique allows the evaluation of changes in mesio-distal distance, thickness of the alveolar ridge and alveolar ridge height based on the measurements on the alveolar contours. Microsc. Res. Tech. 75:513-519, 2012. (C) 2011 Wiley Periodicals, Inc.Contract grant sponsor: MEC; Contract grant number: AP2008-01653; Contract grant sponsor: Generalitat Valenciana; Contract grant number: MY08/ISIRM/S/100; Contract grant sponsor: FEDERGarcía Herraiz, A.; Leiva García, R.; Cañigral-Ortíz, A.; Silvestre, FJ.; Garcia-Anton, J. (2012). Confocal laser scanning microscopy for the study of the morphological changes of the postextraction sites. Microscopy Research and Technique. 75(4):513-519. https://doi.org/10.1002/jemt.21085S513519754Aguilar, M. L., Elias, A., Vizcarrondo, C. E. T., & Psoter, W. J. (2010). Analysis of three-dimensional distortion of two impression materials in the transfer of dental implants. The Journal of Prosthetic Dentistry, 103(4), 202-209. doi:10.1016/s0022-3913(10)60032-7Araujo, M. G., & Lindhe, J. (2005). Dimensional ridge alterations following tooth extraction. An experimental study in the dog. Journal of Clinical Periodontology, 32(2), 212-218. doi:10.1111/j.1600-051x.2005.00642.xAtwood, D. A. (1963). Postextraction changes in the adult mandible as illustrated by microradiographs of midsagittal sections and serial cephalometric roentgenograms. The Journal of Prosthetic Dentistry, 13(5), 810-824. doi:10.1016/0022-3913(63)90225-7Baschong, W., Suetterlin, R., Hefti, A., & Schiel, H. (2001). Confocal laser scanning microscopy and scanning electron microscopy of tissue Ti-implant interfaces. Micron, 32(1), 33-41. doi:10.1016/s0968-4328(00)00025-1Belli, R., Pelka, M., Petschelt, A., & Lohbauer, U. (2009). In vitro wear gap formation of self-adhesive resin cements: A CLSM evaluation. Journal of Dentistry, 37(12), 984-993. doi:10.1016/j.jdent.2009.08.006Botticelli, D., Berglundh, T., & Lindhe, J. (2004). Hard-tissue alterations following immediate implant placement in extraction sites. Journal of Clinical Periodontology, 31(10), 820-828. doi:10.1111/j.1600-051x.2004.00565.xBüyükyilmaz, T., Øgaard, B., Duschner, H., Ruben, J., & Arends, J. (1997). The Caries-Preventive Effect of Titanium Tetrafluoride on Root Surfaces in Situ as Evaluated by Microradiography and Confocal Laser Scanning Microscopy. Advances in Dental Research, 11(4), 448-452. doi:10.1177/08959374970110041101Chantawiboonchai, P., Warita, H., Ohya, K., & Soma, K. (1998). Confocal laser scanning-microscopic observations on the three-dimensional distribution of oxytalan fibres in mouse periodontal ligament. Archives of Oral Biology, 43(10), 811-817. doi:10.1016/s0003-9969(98)00057-0Chen, S. Y., Liang, W. M., & Chen, F. N. (2004). Factors affecting the accuracy of elastometric impression materials. Journal of Dentistry, 32(8), 603-609. doi:10.1016/j.jdent.2004.04.002Czochrowska, E., �gaard, B., Duschner, H., Ruben, J., & Arends, J. (1998). Cariostatic effect of a light-cured, resin-reinforced glass-ionomer for bonding orthodontic brackets in vivo. Journal of Orofacial Orthopedics / Fortschritte der Kieferorthop�die, 59(5), 265-273. doi:10.1007/bf01321793De Carvalho, F. G., Puppin-Rontani, R. M., Soares, L. E. S., Santo, A. M. E., Martin, A. A., & Nociti-Junior, F. H. (2009). Mineral distribution and CLSM analysis of secondary caries inhibition by fluoride/MDPB-containing adhesive system after cariogenic challenges. Journal of Dentistry, 37(4), 307-314. doi:10.1016/j.jdent.2008.12.006Dige, I., Nilsson, H., Kilian, M., & Nyvad, B. (2007). In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. European Journal of Oral Sciences, 115(6), 459-467. doi:10.1111/j.1600-0722.2007.00494.xDing, P. G. F., Matzer, A. R. A. H., Wolff, D., Mente, J., Pioch, T., Staehle, H. J., & Dannewitz, B. (2010). Relationship between microtensile bond strength and submicron hiatus at the composite–dentin interface using CLSM visualization technique. Dental Materials, 26(3), 257-263. doi:10.1016/j.dental.2009.11.003Etman, M. K. (2009). Confocal Examination of Subsurface Cracking in Ceramic Materials. Journal of Prosthodontics, 18(7), 550-559. doi:10.1111/j.1532-849x.2009.00447.xFavia, G., Pilolli, G. P., & Maiorano, E. (2009). Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaws: An analysis of 31 cases with confocal laser scanning microscopy. Bone, 45(3), 406-413. doi:10.1016/j.bone.2009.05.008Faria, A. C. L., Rodrigues, R. C. S., Macedo, A. P., Mattos, M. da G. C. de, & Ribeiro, R. F. (2008). Accuracy of stone casts obtained by different impression materials. Brazilian Oral Research, 22(4), 293-298. doi:10.1590/s1806-83242008000400002Fickl, S., Zuhr, O., Wachtel, H., Bolz, W., & Huerzeler, M. (2008). Tissue alterations after tooth extraction with and without surgical trauma: a volumetric study in the beagle dog. Journal of Clinical Periodontology, 35(4), 356-363. doi:10.1111/j.1600-051x.2008.01209.xGirija, V., & Stephen, H. C.-Y. (2003). Characterization of lipid in mature enamel using confocal laser scanning microscopy. Journal of Dentistry, 31(5), 303-311. doi:10.1016/s0300-5712(03)00068-xGonzález-Cabezas, C., Fontana, M., Dunipace, A. J., Li, Y., Fischer, G. M., Proskin, H. M., & Stookey, G. K. (1998). Measurement of Enamel Remineralization Using Microradiography and Confocal Microscopy. Caries Research, 32(5), 385-392. doi:10.1159/000016475Goracci, G., Mori, G., & Baldi, M. (1999). Terminal end of the human odontoblast process: a study using SEM and confocal microscopy. Clinical Oral Investigations, 3(3), 126-132. doi:10.1007/s007840050090Grötz, K. A., Duschner, H., Reichert, T. E., de Aguiar, E. G., Götz, H., & Wagner, W. (1998). Histotomography of the odontoblast processes at the dentine-enamel junction of permanent healthy human teeth in the confocal laser scanning microscope. Clinical Oral Investigations, 2(1), 21-25. doi:10.1007/s007840050038Iyama, S., Takeshita, F., Ayukawa, Y., Kido, M. A., Suetsugu, T., & Tanaka, T. (1997). A Study of the Regional Distribution of Bone Formed Around Hydroxyapatite Implants in the Tibiae of Streptozotocin-Induced Diabetic Rats Using Multiple Fluorescent Labeling and Confocal Laser Scanning Microscopy. Journal of Periodontology, 68(12), 1169-1175. doi:10.1902/jop.1997.68.12.1169Kabasawa, M., Ejiri, S., Hanada, K., & Ozawa, H. (1995). Histological Observations of Dental Tissues Using the Confocal Laser Scanning Microscope. Biotechnic & Histochemistry, 70(2), 66-69. doi:10.3109/10520299509108319Kagayama, M., Sasano, Y., Mizoguchi, I., & Takahashi, I. (1997). Confocal microscopy of cementocytes and their lacunae and canaliculi in rat molars. Anatomy and Embryology, 195(6), 491-496. doi:10.1007/s004290050068Lam, R. V. (1960). Contour changes of the alveolar processes following extractions. The Journal of Prosthetic Dentistry, 10(1), 25-32. doi:10.1016/0022-3913(60)90083-4LOVE, R. M., & CHANDLER, N. P. (1996). A scanning electron and confocal laser microscope investigation of tetracycline-affected human dentine. International Endodontic Journal, 29(6), 376-381. doi:10.1111/j.1365-2591.1996.tb01401.xLucchese, A., Pilolli, G. P., Petruzzi, M., Crincoli, V., Scivetti, M., & Favia, G. (2008). Analysis of Collagen Distribution in Human Crown Dentin by Confocal Laser Scanning Microscopy. Ultrastructural Pathology, 32(3), 107-111. doi:10.1080/01913120801897216Nishikawa, T., Masuno, K., Mori, M., Tajime, Y., Kakudo, K., & Tanaka, A. (2006). Calcification at the Interface Between Titanium Implants and Bone: Observation With Confocal Laser Scanning Microscopy. Journal of Oral Implantology, 32(5), 211-217. doi:10.1563/799.1Øgaard, B., Duschner, H., Ruben, J., & Arends, J. (1996). Microradiography and confocal laser scanning microscopy applied to enamel lesions formed in vivo with and without fluoride varnish treatment. European Journal of Oral Sciences, 104(4), 378-383. doi:10.1111/j.1600-0722.1996.tb00095.xPereira, J. R., Murata, K. Y., Valle, A. L. do, Ghizoni, J. S., & Shiratori, F. K. (2010). Linear dimensional changes in plaster die models using different elastomeric materials. Brazilian Oral Research, 24(3), 336-341. doi:10.1590/s1806-83242010000300013Pietrokovski, J., & Massler, M. (1967). Alveolar ridge resorption following tooth extraction. The Journal of Prosthetic Dentistry, 17(1), 21-27. doi:10.1016/0022-3913(67)90046-7Pilolli, G. P., Lucchese, A., Maiorano, E., & Favia, G. (2008). New Approach for Static Bone Histomorphometry: Confocal Laser Scanning Microscopy of Maxillo-Facial Normal Bone. Ultrastructural Pathology, 32(5), 189-192. doi:10.1080/01913120802397836Pioch, T., Sorg, T., Stadler, R., Hagge, M., & Dörfer, C. E. (2004). Resin penetration through submicrometer hiatus structures: A SEM and CLSM study. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 71B(2), 238-243. doi:10.1002/jbm.b.30021Radlanski, R. J., Renz, H., Willersinn, U., Cordis, C. A., & Duschner, H. (2001). Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections. European Journal of Oral Sciences, 109(6), 409-414. doi:10.1034/j.1600-0722.2001.00149.xSakakura, Y., Yajima, T., & Tsuruga, E. (1998). Confocal laser scanning and microscopic study of tartrate-resistant acid phosphatase-positive cells in the dental follicle during early morphogenesis of mouse embryonic molar teeth. Archives of Oral Biology, 43(5), 353-360. doi:10.1016/s0003-9969(98)00019-3Scivetti, M., Pilolli, G. P., Corsalini, M., Lucchese, A., & Favia, G. (2007). Confocal laser scanning microscopy of human cementocytes: Analysis of three-dimensional image reconstruction. Annals of Anatomy - Anatomischer Anzeiger, 189(2), 169-174. doi:10.1016/j.aanat.2006.09.009Sønju Clasen, A. B., Øgaard, B., Duschner, H., Ruben, J., Arends, J., & Sönju, T. (1997). Caries Development in Fluoridated and Non-Fluoridated Deciduous and Permanent Enamel in Situ Examined by Microradiography and Confocal Laser Scanning Microscopy. Advances in Dental Research, 11(4), 442-447. doi:10.1177/08959374970110041001Suzuki, K., Aoki, K., & Ohya, K. (1997). Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone, 21(6), 507-514. doi:10.1016/s8756-3282(97)00204-4Takenaka, S., Iwaku, M., & Hoshino, E. (2001). Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. Journal of Infection and Chemotherapy, 7(2), 87-93. doi:10.1007/s101560100014Thongthammachat, S., Moore, B. K., Barco, M. T., Hovijitra, S., Brown, D. T., & Andres, C. J. (2002). Dimensional accuracy of dental casts: Influence of tray material, impression material, and time. Journal of Prosthodontics, 11(2), 98-108. doi:10.1053/jopr.2002.125192Traini, T., Degidi, M., Iezzi, G., Artese, L., & Piattelli, A. (2007). Comparative evaluation of the peri-implant bone tissue mineral density around unloaded titanium dental implants. Journal of Dentistry, 35(1), 84-92. doi:10.1016/j.jdent.2006.05.002Van der Weijden, F., Dell’Acqua, F., & Slot, D. E. (2009). Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. Journal of Clinical Periodontology, 36(12), 1048-1058. doi:10.1111/j.1600-051x.2009.01482.xZaura-Arite, E., van Marle, J., & ten Cate, J. M. (2001). Confocal Microscopy Study of Undisturbed and Chlorhexidine-treated Dental Biofilm. Journal of Dental Research, 80(5), 1436-1440. doi:10.1177/0022034501080005100

    Missing upper incisors: a retrospective study of orthodontic space closure versus implant

    Get PDF
    Background: The aim of this retrospective study was to compare the esthetic, periodontal, and functional outcomes of orthodontic space closure versus implant substitution in patients with missing maxillary incisors 5 years after completion of treatment. Methods: The study group consisted of ten patients treated with orthodontic space closure (six males, four females, mean age 19 ± 2.1 years at the completion of treatment) and ten patients treated with implant insertion (five males, five females, mean age 20 ± 1.4 years at the time of implant insertion). Tooth mobility, plaque index, probing depth, infraocclusion, open gingival embrasure (black triangle), and temporomandibular joint function were recorded at the 5.6 years follow-up. Self-perceived dental esthetic appearance was also evaluated through a visual analog scale (VAS) questionnaire. T-test was used to evaluate the data. Results: All patients were equally satisfied with the appearance of their teeth 5.6 ± 0.4 years after the completion of treatment. No statistically significant differences were found in relation to the VAS scores of the subjects (P < 0.857). No significant differences were found in tooth mobility, plaque index (P < 0.632), and the prevalence of signs and symptoms of temporomandibular disorders. However, significant infraocclusion was noticed in all implant patients (P < 0.001). Probing depth was also significantly higher in implant patients (P < 0.001). Conclusions: Orthodontic space closure and implant of missing maxillary incisors produced similar, well-accepted esthetic results. None of the treatments impaired temporomandibular joint function. Nevertheless, infraocclusion was evident in implant patients. Space closure patients also showed better periodontal health in comparison with implant patients

    Outcomes and prognostic factors that influence the success of tooth autotransplantation in children and adolescents.

    Get PDF
    BACKGROUND/AIM: Tooth autotransplantation has been advocated for replacement of missing teeth, or teeth that are unsuitable for restoration. The aim of this study was to investigate the outcomes and prognostic factors that influenced the success of tooth transplantation in a paediatric population. MATERIALS AND METHODS: Data was extracted from the records of 75 patients (89 teeth). Demographic and prognostic factors were recorded and analyzed for the clinical and radiographic outcomes for periodontal ligament (PDL) and pulp healing of transplanted teeth. RESULTS: The mean age at transplant was 13.2 years and the mean follow-up observation period was 2.6±1.8 years with a range of 12.0 months-9.9 years. The main reason for transplantation was to replace upper central incisors lost or missing due to dental trauma, hypodontia and dilaceration. Of the 45 teeth that were monitored for pulp revascularization, 75.6% showed clinical and radiographic signs of pulp healing and 24.4% showed signs of pulp necrosis and infection. Pulp healing was significantly related to the stage of root development of the transplant. Favourable PDL healing was observed in 87.6% of the transplants, while 13.5% showed signs of replacement resorption. PDL healing was significantly related to the stage of root formation of the transplanted tooth at the time of the surgery, the ease of handling and placement of the tooth, and the status of the alveolar bone at the recipient site at the time of the surgery. Overall success of tooth transplantation was 87.6% and the survival rate was 94.4%. CONCLUSIONS: Tooth transplantation carried out in children and adolescents demonstrated high success and survival, with the stage of root development influencing both the pulp and PDL healing of the transplanted teeth

    A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - a pilot study

    Get PDF
    Background: This study aims to investigate, utilising micro-computed tomography (micro-CT) and histology, whether the topical application of nerve growth factor (NGF) and/or epidermal growth factor (EGF) can enhance periodontal, alveolar bone, root and pulpal tissue regeneration while minimising the risk of pulpal necrosis, root resorption and ankylosis of replanted molars in a rat model. Methods: Twelve four-week-old male Sprague-Dawley rats were divided into four groups: sham, collagen, EGF and NGF. The maxillary right first molar was elevated and replanted with or without a collagen membrane impregnated with either the growth factors EGF or NGF, or a saline solution. Four weeks after replantation, the animals were sacrificed and the posterior maxilla was assessed using histological and micro-CT analysis. The maxillary left first molar served as the control for the corresponding right first molar. Results: Micro-CT analysis revealed a tendency for all replanted molars to have reduced root length, root volume, alveolar bone height and inter-radicular alveolar bone volume. It appears that the use of the collagen membrane had a negative effect while no positive effect was noted with the incorporation of EGF or NGF. Histologically, the incorporation of the collagen membrane was found to negatively affect pulpal, root, periodontal and alveolar bone healing with pulpal inflammation and hard tissue formation, extensive root resorption and alveolar bone fragmentation. The incorporation of EGF and NGF did not improve root, periodontal or alveolar bone healing. However, EGF was found to improve pulp vascularisation while NGF improved pulpal architecture and cell organisation, although not to the level of the control group.Conclusions: Results indicate a possible benefit on pulpal vascularisation and pulpal cell organisation following the incorporation of EGF and NGF, respectively, into the alveolar socket of replanted molars in the rat model. No potential benefit of EGF and NGF was detected in periodontal or root healing, while the use of a collagen membrane carrier was found to have a negative effect on the healing response

    Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment

    Get PDF
    Demineralised white lesions (DWLs) can appear on teeth during fixed brace treatment because of early decay around the brackets that attach the braces to the teeth. Fluoride is effective in reducing decay in susceptible individuals in the general population. Individuals receiving orthodontic treatment may be prescribed various forms of fluoride treatment. This review compares the effects of various forms of fluoride used during orthodontic treatment on the development of DWLs. This is an update of a Cochrane review first published in 2004
    corecore