316 research outputs found
Predictions from a stochastic polymer model for the MinDE dynamics in E.coli
The spatiotemporal oscillations of the Min proteins in the bacterium
Escherichia coli play an important role in cell division. A number of different
models have been proposed to explain the dynamics from the underlying
biochemistry. Here, we extend a previously described discrete polymer model
from a deterministic to a stochastic formulation. We express the stochastic
evolution of the oscillatory system as a map from the probability distribution
of maximum polymer length in one period of the oscillation to the probability
distribution of maximum polymer length half a period later and solve for the
fixed point of the map with a combined analytical and numerical technique. This
solution gives a theoretical prediction of the distributions of both lengths of
the polar MinD zones and periods of oscillations -- both of which are
experimentally measurable. The model provides an interesting example of a
stochastic hybrid system that is, in some limits, analytically tractable.Comment: 16 page
Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets
T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly
Acceptability, reliability, referential distributions and sensitivity to change in the Young Person's Clinical Outcomes in Routine Evaluation (YP-CORE) outcome measure: Replication and refinement
Background: Many outcome measures for young people exist, but the choices for services are limited when seeking measures that (a) are free to use in both paper and electronic format, and (b) have evidence of good psychometric properties. Method: Data on the Young Person's Clinical Outcomes in Routine Evaluation (YP-CORE), completed by young people aged 11-16, are reported for a clinical sample (N = 1269) drawn from seven services and a nonclinical sample (N = 380). Analyses report item omission, reliability, referential distributions and sensitivity to change. Results: The YP-CORE had a very low rate of missing items, with 95.6% of forms at preintervention fully completed. The overall alpha was .80, with the values for all four subsamples (11-13 and 14-16 by gender) exceeding .70. There were significant differences in mean YP-CORE scores by gender and age band, as well as distinct reliable change indices and clinically significant change cut-off points. Conclusions: These findings suggest that the YP-CORE satisfies standard psychometric requirements for use as a routine outcome measure for young people. Its status as a free to use measure and the availability of an increasing number of translations makes the YP-CORE a candidate outcome measure to be considered for routine services
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
Complex patterns of spontaneous initiations and terminations of reentrant circulation in a loop of cardiac tissue
A two-component model is developed that consists of a discrete loop of
cardiac cells that circulates action potentials together with a cardiac pacing
mechanism. Physiological properties of cells such as restitutions of
refractoriness and of conduction velocity are given via experimentally measured
functions. The dynamics of circulating pulses and their interactions with the
pacer are regulated by two threshold relations. Patterns of spontaneous
initiations and terminations of reentry (SITR) generated by this system are
studied through numerical simulations and analytical observations. These
patterns can be regular or irregular; causes of irregularities are identified
as the threshold bistability of reentrant circulation (T-bistability) and in
some cases, also phase-resetting interactions with the pacer.Comment: 27 pages, 10 figures, 61 references; A version of this paper (same
results) is to appear in the Journal of Theoretical Biology; arXiv V2 adds
helpful commments to facilitate reading and corrects minor errors in
presentatio
Actin behavior in bulk cytoplasm is cell cycle regulated in early vertebrate embryos
The mechanical properties of cells change as they proceed through the cell cycle, primarily owing to regulation of actin and myosin II. Most models for cell mechanics focus on actomyosin in the cortex and ignore possible roles in bulk cytoplasm. We explored cell cycle regulation of bulk cytoplasmic actomyosin in Xenopus egg extracts, which is almost undiluted cytoplasm from unfertilized eggs. We observed dramatic gelation-contraction of actomyosin in mitotic (M phase) extract where Cdk1 activity is high, but not in interphase (I-phase) extract. In spread droplets, M-phase extract exhibited regular, periodic pulses of gelation-contraction a few minutes apart that continued for many minutes. Comparing actin nucleation, disassembly and myosin II activity between M-phase and I-phase extracts, we conclude that regulation of nucleation is likely to be the most important for cell cycle regulation. We then imaged F-actin in early zebrafish blastomeres using a GFP–Utrophin probe. Polymerization in bulk cytoplasm around vesicles increased dramatically during mitosis, consistent with enhanced nucleation. We conclude that F-actin polymerization in bulk cytoplasm is cell cycle regulated in early vertebrate embryos and discuss possible biological functions of this regulation
- …
