76 research outputs found

    Retrograde regulation of activity-dependent synaptic growth by Synaptotagmin 4

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2009.Includes bibliographical references.Ca2+ influx into pre- and post-synaptic compartments during neuronal activity is a key mediator of neurotransmitter release and synaptic plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ remain unknown. The Synaptotagmin family of Ca2+ sensors includes several evolutionarily conserved neuronal isoforms that are predicted to regulate vesicle fusion, including the synaptic vesicle Ca2+ sensor Synaptotagmin 1. Recently, the Synaptotagmin 4 (Syt 4) isoform was localized to postsynaptic vesicles at Drosophila neuromuscular junctions (NMJs), suggesting a role in Ca2+-dependent release of retrograde signals. Here we demonstrate that fusioncompetent Syt 4 vesicles localize postsynaptically in Drosophila central nervous system (CNS) neurons, suggesting Syt 4 may be a general regulator of postsynaptic vesicle trafficking. Syt 4 mRNA and protein levels are bi-directionally regulated by neuronal activity, with seizure induction increasing Syt 4 levels and decreased activity reducing Syt 4 expression. Bi-directional manipulations of postsynaptic Syt 4 levels in vivo demonstrate that it regulates synaptic growth at NMJs, with Syt 4 mutants showing reduced varicosity number. Postsynaptic over-expression of Syt 4 enhances synaptic growth and requires Ca2+ binding by both the C2A and C2B domains, as well as serine 284, an evolutionarily conserved substitution for a key C2A Ca2+-binding aspartic acid found in other synaptotagmin isoforms. In addition, Syt 4 is required for activitydependent structural plasticity at NMJs, including seizure-induced and temperaturedependent synaptic growth. These findings suggest retrograde vesicular trafficking mediated by Syt 4 contributes to activity-dependent growth of neuronal connections.by Cynthia F. Barber.Ph.D

    The Molecular Biogeography of the Indo-Pacific: Testing Hypotheses With Multispecies Genetic Patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo-Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. \u3eLocation: The Indo-Pacific Ocean. Time Period: Pliocene through the Holocene. Major Taxa Studied: Fifty-six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo-Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance-based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main Conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo-Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo-Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5

    The molecular biogeography of the Indo‐Pacific: Testing hypotheses with multispecies genetic patterns

    Get PDF
    Aim: To test hypothesized biogeographic partitions of the tropical Indo‐Pacific Ocean with phylogeographic data from 56 taxa, and to evaluate the strength and nature of barriers emerging from this test. Location: The Indo‐Pacific Ocean. Time period: Pliocene through the Holocene. Major taxa studied: Fifty‐six marine species. Methods: We tested eight biogeographic hypotheses for partitioning of the Indo‐ Pacific using a novel modification to analysis of molecular variance. Putative barriers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and these ΦST distributions were compared to distributions from randomized datasets and simple coalescent simulations of vicariance arising from the Last Glacial Maximum. We then weighed the relative contribution of distance versus environmental or geographic barriers to pairwise ΦST with a distance‐based redundancy analysis (dbRDA). Results: We observed a diversity of outcomes, although the majority of species fit a few broad biogeographic regions. Repeated coalescent simulation of a simple vicariance model yielded a wide distribution of pairwise ΦST that was very similar to empirical distributions observed across five putative barriers to gene flow. Three of these barriers had median ΦST that were significantly larger than random expectation. Only 21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had overwater distance as a significant predictor of pairwise ΦST, while 11 were significant for geographic or environmental barriers other than distance. Main conclusions: Although there is support for three previously described barriers, phylogeographic discordance in the Indo‐Pacific Ocean indicates incongruity between processes shaping the distributions of diversity at the species and population levels. Among the many possible causes of this incongruity, genetic drift provides the most compelling explanation: given massive effective population sizes of Indo‐Pacific species, even hard vicariance for tens of thousands of years can yield ΦST values that range from 0 to nearly 0.5

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean

    Get PDF
    Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Economic Evaluation of Lupus Nephritis in the Systemic Lupus International Collaborating Clinics Inception Cohort Using a Multistate Model Approach.

    Get PDF
    OBJECTIVE: Little is known about the long-term costs of lupus nephritis (LN). The costs were compared between patients with and without LN using multistate modeling. METHODS: Patients from 32 centers in 11 countries were enrolled in the Systemic Lupus International Collaborating Clinics inception cohort within 15 months of diagnosis and provided annual data on renal function, hospitalizations, medications, dialysis, and selected procedures. LN was diagnosed by renal biopsy or the American College of Rheumatology classification criteria. Renal function was assessed annually using the estimated glomerular filtration rate (GFR) or estimated proteinuria. A multistate model was used to predict 10-year cumulative costs by multiplying annual costs associated with each renal state by the expected state duration. RESULTS: A total of 1,545 patients participated; 89.3% were women, the mean ± age at diagnosis was 35.2 ± 13.4 years, 49% were white, and the mean followup duration was 6.3 ± 3.3 years. LN developed in 39.4% of these patients by the end of followup. Ten-year cumulative costs were greater in those with LN and an estimated glomerular filtration rate (GFR) 60 ml/minute) or with LN and estimated proteinuria >3 gm/day (84,040versus84,040 versus 20,499 if no LN and estimated proteinuria <0.25 gm/day). CONCLUSION: Patients with estimated GFR <30 ml/minute incurred 10-year costs 15-fold higher than those with normal estimated GFR. By estimating the expected duration in each renal state and incorporating associated annual costs, disease severity at presentation can be used to anticipate future health care costs. This is critical knowledge for cost-effectiveness evaluations of novel therapies

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
    corecore