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1  | INTRODUC TION

To understand the dynamics of marine systems, biogeographers ex‐
amine how geography, climate and biotic factors shape biodiversity 
and evolutionary divergence at scales ranging from genes to spe‐
cies and from ecosystems to continents and globe‐spanning oceans. 
This work is increasing in importance because biogeographic regions 
defined by species assemblages and climatic/environmental factors 
provide the foundation to identify patterns of biodiversity and, more 
recently, to define conservation regions (Ladle & Whittaker, 2011; 
Margules & Pressey, 2000; Pressey & Bottrill, 2009).

Global biogeographic classification schemes have been devel‐
oped for terrestrial (Olson et al., 2001), freshwater (Abell, Thieme, 
Revenga, Bryer, & Kottelat, 2008) and marine (Briggs, 1974; Spalding 
et al., 2007; Veron, Stafford‐Smith, Devantier, & Turak, 2015; Watling, 
Guinotte, Clark, & Smith, 2013) provinces and vary in levels of de‐
tail. Traditionally, these classification systems partition biodiversity 
based on species distributions and levels of endemism (Abell et al., 
2008; Briggs, 1974; Olson et al., 2001). However, many classification 
systems also consider abiotic factors, dominant habitat, connectiv‐
ity and geomorphological features (Belanger et al., 2012; Valentine 
& Jablonski, 2010) and can take a nested hierarchical approach (i.e. 
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Abstract
Aim: To test hypothesized biogeographic partitions of the tropical Indo‐Pacific Ocean 
with phylogeographic data from 56 taxa, and to evaluate the strength and nature of 
barriers emerging from this test.
Location: The Indo‐Pacific Ocean.
Time period: Pliocene through the Holocene.
Major taxa studied: Fifty‐six marine species.
Methods: We tested eight biogeographic hypotheses for partitioning of the Indo‐
Pacific using a novel modification to analysis of molecular variance. Putative barri‐
ers to gene flow emerging from this analysis were evaluated for pairwise ΦST, and 
these ΦST distributions were compared to distributions from randomized datasets 
and simple coalescent simulations of vicariance arising from the Last Glacial 
Maximum. We then weighed the relative contribution of distance versus environ‐
mental or geographic barriers to pairwise ΦST with a distance‐based redundancy 
analysis (dbRDA).
Results: We observed a diversity of outcomes, although the majority of species fit a 
few broad biogeographic regions. Repeated coalescent simulation of a simple vicari‐
ance model yielded a wide distribution of pairwise ΦST that was very similar to empiri‐
cal distributions observed across five putative barriers to gene flow. Three of these 
barriers had median ΦST that were significantly larger than random expectation. Only 
21 of 52 species analysed with dbRDA rejected the null model. Among these, 15 had 
overwater distance as a significant predictor of pairwise ΦST, while 11 were signifi‐
cant for geographic or environmental barriers other than distance.
Main conclusions: Although there is support for three previously described barriers, 
phylogeographic discordance in the Indo‐Pacific Ocean indicates incongruity be‐
tween processes shaping the distributions of diversity at the species and population 
levels. Among the many possible causes of this incongruity, genetic drift provides the 
most compelling explanation: given massive effective population sizes of Indo‐Pacific 
species, even hard vicariance for tens of thousands of years can yield ΦST values that 
range from 0 to nearly 0.5.

K E Y W O R D S

analysis of molecular variance, biogeographic provinces, biogeographic realms, comparative 
phylogeography, discordance, dispersal, distance‐based redundancy analysis
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Olson et al., 2001; Spalding et al., 2007). More recently, molecular 
phylogenies at the species level have also been used to describe bio‐
geographic regions (Cowman, Parravicini, Kulbicki, & Floeter, 2017).

None of these varied approaches includes information below 
the species level or encompasses the distribution of genetic lineages 
and spatial structuring of genetic diversity within species. Given that 
biogeographic barriers occur in regions where geological or environ‐
mental variations create filters to species dispersal and connectivity 
(Avise, 1992), these same processes should shape the distribution 
of intraspecific genetic diversity and reflect processes, such as spe‐
ciation, population growth, colonization and dispersal that under‐
lie species distributions. As such, synthesizing biogeographic and 
phylogeographic patterns provides an ideal way to test whether 
hypothesized biogeographic breaks correspond to breaks in genetic 
structure, as would be expected given the mechanisms generally in‐
voked to explain such breaks.

Early efforts to design global marine biogeographic classifica‐
tion schemes were based on the distribution of well‐characterized 
fishes, with endemism being considered as having evolutionary 
uniqueness. For example, Ekman (1953) described large‐scale bio‐
geographic regions and subregions, such as the continental shelf, 
tropical, temperate and polar waters. Briggs (1974) further divided 
continental shelves into biogeographic regions that each encom‐
passed provinces defined by 10% endemism in fishes, a criterion 
that was later adopted by others (Hayden, Ray, & Dolan, 1984). 
This classification scheme was revised by Briggs and Bowen (2012; 
fig. 1) who divided the tropical Indo‐Pacific into five provinces, 
including the expansive Indo‐Polynesian province that spans from 
the Maldives to French Polynesia, while assigning each of Hawai’i, 
the Marquesas, Easter Island and the Western Indian Ocean to 
the level of province based on the high level of fish endemism 
found in each. More recent efforts have been driven by the need 
for fine‐scale classification to address regional resource manage‐
ment. Spalding et al. (2007) developed a hierarchical classification 
system based on data‐driven expert opinion for multiple coastal 
taxa that divided the Indo‐Pacific into three realms, which were 
further subdivided into 25 provinces and 77 ecoregions based on 
species distributions, dominant habitat type, and geomorpholog‐
ical and oceanographic features. Kulbicki et al. (2013) employed 
a clustering method based on the dissimilarity of reef fish assem‐
blages to resolve 10 provinces nested within three regions in the 
Indo‐Pacific. Keith, Baird, Hughes, Madin, and Connolly (2013) 
defined 11 faunal provinces in the tropical Indo‐Pacific based on 
distributions and co‐occurrence of range boundaries in corals. 
Finally, Veron et al. (2015) subdivided the Indo‐Pacific into 124 
ecoregions in 12 divisions based on the distribution of the habitat‐
forming scleractinian corals and environmental distinctiveness.

One limitation of the aforementioned regionalization mod‐
els (Figure 1) is that they are defined by patterns emerging from 
nearshore species distribution data (Keith et al., 2013; Kulbicki 
et al., 2013; Veron et al., 2015) and give less consideration to the 
processes that govern the distribution of marine biodiversity more 
generally (but see Briggs & Bowen, 2013). Where large‐scale geo‐
logical processes have been taken into account, for example through 

application of cladistic biogeography (Pandolfi, 1992), speciation 
patterns match with these regionalizations (Keith et al., 2013). By 
focusing on pattern over process, we limit our ability to understand 
the historical or contemporary causes of biogeographic patterns.

One approach to address such process‐related questions in bio‐
geographic regionalization models is through inclusion of data on 
intraspecific genetic diversity. There are many intriguing questions 
that might be addressed at the scale of intraspecific genetic diver‐
sity patterns: At what spatial and temporal scale does intraspecific 
genetic variation occur (Benzie, 1999)? Are intraspecific genetic pat‐
terns consistent with biogeographic hypotheses showing a coarse‐
grained nature (Briggs & Bowen, 2013; Huang, Goldberg, Chou, & 
Roy, 2018; Pandolfi, 1992), or do local environments play a greater 
role than large‐scale geographic regions (Spalding et al., 2007)? Does 
the observed turnover in species diversity among regions result sim‐
ply from the vast expanse of open ocean between continents and 
archipelagos (Vermeij, 1987), or are there barriers to dispersal such 
as currents (Barber, Cheng, Erdmann, Tenggardjaja, & Ambariyanto, 
2011; Treml, Roberts, Halpin, Possingham, & Riginos, 2015), that act 
above and beyond the effects of geographic distance? Underlying 
processes operating across a range of temporal and spatial scales 
are likely to have an effect on genetic diversity and turnover of hap‐
lotypes much as they do on species diversity (Palumbi, 1997).

Phylogeographic studies of marine organisms are notoriously 
challenging due to large effective population sizes and potentially 
high rates of larval dispersal among populations (Hellberg, 2009). 
These traits tend to depress F‐statistics and related measures of 
population structure, creating blurred and discordant phylogeo‐
graphic patterns (Crandall, Frey, Grosberg, & Barber, 2008; Gagnaire 
et al., 2015; Waples, 1998). Replication of observations is thus key to 
elucidating shared historical processes (Horne, 2014a). While single‐
species studies of phylogeography abound in the marine literature 
(Keyse et al., 2014), and some multispecies regional case studies 
have been conducted (Barber et al., 2011; Carpenter et al., 2011; 
Gaither & Rocha, 2013; Ilves, Huang, Wares, & Hickerson, 2010; 
Kelly & Palumbi, 2010; Liggins, Treml, Possingham, & Riginos, 2016; 
Marko et al., 2010; Teske, Von der Heyden, McQuaid, & Barker, 
2011; Toonen et al., 2011;), there has never been a multispecies 
phylogeographic test of biogeographic hypotheses at a global scale.

In this study, we leverage a unique, curated database of genetic 
data spanning the vast Indo‐Pacific region to undertake the larg‐
est multispecies phylogeographic study to date. Using data from 
56 taxonomically diverse species, representing 4 phyla and 27 
families, we investigate which of the biogeographic divisions iden‐
tified in published marine biogeographic regionalization models 
are reflected in the distribution of genetic variation below the spe‐
cies level. Concordant phylogeographic patterns across indepen‐
dent species provide evidence for shared evolutionary processes, 
and divisions between biogeographic regions indicate significant 
environmental or geographic barriers that could be recapitulated 
at the population genetic level (Avise, 2000). As such, if the parti‐
tions defined by species distributions, major habitat features and 
oceanography are regarded as first‐order approximations of im‐
portant and enduring barriers to gene flow, then we would expect 
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concordance between these biogeographic hypotheses and ge‐
netic‐based population level phylogeography (Bowen et al., 2016; 
Harvey et al., 2017).

To conduct this analysis, we present a novel analytical frame‐
work for phylogeographic hypothesis testing across multiple spe‐
cies. First, we develop a new approach to analysis of molecular 
variance (AMOVA) set within a comparative framework to rigor‐
ously evaluate support for competing biogeographic hypotheses 
based on how well they explain the distribution of genetic di‐
versity in each species. Second, we statistically evaluate genetic 
structure generated across divisions among regions (putative 
barriers) for the two best‐supported regionalizations. Finally, we 
disentangle the relative influences of geographic distance versus 
impediments to gene flow (historical vicariance, steep environ‐
mental gradients, etc.) on evolutionary divergence using dis‐
tance‐based redundancy analysis (Legendre & Anderson, 1999).

2  | METHODS

2.1 | Data acquisition and quality control: 
Assembling the DIPnet database

A list of published marine phylogeographic studies from the Indo‐

Pacific region was compiled in October 2014 during a National 

Evolutionary Synthesis Center (NESCent) workshop of the Diversity 

of the Indo‐Pacific Network (DIPnet; http://diversityindopacific.

net/) held in Durham, North Carolina, based on keyword searches 

of the literature and expert knowledge of working group members. 

Lead authors on published papers and the heads of research groups 

known to be actively working in Indo‐Pacific phylogeography were 

also contacted for data. Data were submitted between July 2014 

to April 2015 according to instructions developed by the NESCent 

working group. Each mitochondrial dataset consisted of Sanger 

F I G U R E  1  Biogeographic regionalizations that were tested using model selection with analysis of molecular variance (AMOVA). Colours 
represent different regions within a scheme. (a) Briggs and Bowen (2012), endemism in fishes, provinces (k = 5); (b) Keith et al. (2013), 
range boundaries of corals, provinces (k = 11); (c) Kulbicki et al. (2013), reef fish species composition, realms (k = 3); (d) Kulbicki et al. (2013), 
provinces (k = 10); (e) Spalding et al. (2007), expert opinion, realms (k = 3); (f) Spalding et al. (2007) provinces (k = 27); (g) Spalding et al. 
(2007) ecoregions (k = 77); (h) Veron et al. (2015), coral distribution, divisions (k = 12)

http://diversityindopacific.net/
http://diversityindopacific.net/
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sequence data in FASTA format. Metadata for each sequence were 
assembled in a spreadsheet template generated using the Biocode 
Field Information Management System [Biocode FIMS; now avail‐
able at GeOMe, see Deck et al. (2017)]. Genetic data and associ‐
ated metadata underwent rigorous quality control during and after 
submission (Supporting Information Text S1).

2.2 | Regionalizations and overwater distances

Sequences for each species and genetic locus combination were 
assigned group membership using several spatial regionalization 
schemes (Figure 1). The location of each population sample site 
(latitude and longitude) in the database was extracted directly or 
estimated using the geographic place names in the metadata. All 
individual sample sites were intersected with each regionalization 
(Figure 1) to assign appropriate group membership to each sample.

Overwater distances between all sampled localities were mea‐
sured using a simple cost‐path algorithm. To simplify this distance 
calculation, all samples within 10 km were treated as a single mean 
location (distances between these clustered sites were set to 0)  
and all locations that fell on land (due to coordinate imprecision or 
geolocating based on place names) were moved to the nearest water 
cell, if within 20 km. Overwater distances were calculated between 
all possible pairs of unique locations. Using a cost surface where 
water has a cost of one (land cells cannot be crossed), the algo‐
rithm effectively finds the shortest geographic distance between 
points across water cells only. The R package gdistance (van Etten, 
2017) was used for finding overwater distances. R code for this and  
all other analyses can be found at http://dipnet.github.io/
popgenDB/.

2.3 | Analysis of molecular variance

We identified the best supported biogeographic regionalization 
scheme for each species using a novel approach to the hierarchi‐
cal analysis of molecular variance (Excoffier, Smouse, & Quattro, 
1992) model wherein we calculated the Bayesian information crite‐
rion (BIC; Schwarz, 1978), based on both FST (Weir & Cockerham, 
1984) and ΦST (Excoffier et al., 1992) for use in a model selection 
framework. As results were broadly similar for both statistics, we 
present results for ΦST, which includes genetic distance between 
haplotypes (we provide results for FST, which is based solely on hap‐
lotype frequencies in Supporting Information Text S2). For each spe‐
cies, sampling locations were binned into regions according to each 
biogeographic regionalization scheme as described above. AMOVA 
was conducted using the pegas package (Paradis, 2010) in R (R Core 
Team, 2014) for each dataset to estimate the variance components 
for individuals nested within sampling locations (s2

err
), sampling loca‐

tions nested within regions (s2
loc
), and regions (s2

reg
). The biogeographic 

regionalization scheme that was best aligned with the genetic struc‐
ture of a species‐locus combination will result in the greatest amount 
of variance in the data explained by regions (s2

reg
) and the least varia‐

tion explained by samples nested within regions (s2
loc
) and individuals 

nested within samples (s2
err
). BIC was employed to select the biogeo‐

graphic regionalization that best explained the genetic structure for 
each species‐locus combination and was calculated as follows (modi‐
fied from Jombart, Devillard, & Balloux, 2010):

where n is the number of samples nested within regions and k is 
the number of regions. BIC was then converted to relative prob‐
ability following Johnson and Omland (2004). The regionalization 
yielding the highest relative probability (lowest BIC) was deemed 
the best model. We present results for 56 species that had suffi‐
cient sampling to test at least five out of the eight biogeographic 
hypotheses (citations to original datasets can be found in the 
Appendix).

Our a priori model‐selection framework is similar to spatial analysis 
of molecular variance (SAMOVA; Dupanloup, Schneider & Excoffier, 
2002) used for detecting patterns of genetic structure post hoc, be‐
cause it employs AMOVA and maximizes ΦCT. However, SAMOVA 
cannot be used to test which regionalization model best explains the 
data. SAMOVA alters the affiliation of samples to regions, given a pre‐
determined number of regions. In contrast, our approach penalizes the 
number of regions by employing BIC, thereby allowing for objective 
comparison among hypotheses with different numbers of regions in a 
model selection context.

Cryptic species are often discovered on Indo‐Pacific reefs (e.g. 
Crandall, Frey et al., 2008), and can create a taxonomic bias if not 
properly accounted for (Knowlton, 1993). To assess the presence of 
cryptic species in our dataset and their potential effect on our results, 
we used the software abgd (0.001 < p < 0.1, 10 steps, minimum slope 
increase = 1.5, Jukes–Cantor distances; Puillandre, Lambert, Brouillet, 
& Achaz, 2012) to partition each species into evolutionarily significant 
units (ESUs) based on the range of intraclade genetic variation. Model 
selection was performed on the resultant ESUs, as above.

2.4 | Barrier strength analysis

Biogeographic breaks arise for different reasons. While some may 
be related to distances between suitable habitat being greater 
than the dispersal capacity of an individual species, others, such 
as the break at the Sunda Shelf (hereafter referred to as the “Indo‐
Pacific Barrier”), are related to land barriers created by lowered 
sea‐level stands. To understand the influence of specific biogeo‐
graphic breaks on the genetic structuring of taxa, we further eval‐
uated the boundaries between regions of the two best‐supported 
models (combining them into a single merged regionalization) with 
a novel analysis that examines the central tendency of pairwise 
ΦST values measured across each boundary. We used the StrataG R 
package (Archer, Adams, & Schneiders, 2017) to calculate pairwise 
ΦST across each putative barrier for 68 species for which a pairwise 
comparison was possible (some species not amenable to AMOVA 
were included here; Supporting Information Tables S1, S2). To 

(1)BIC=n ln
(

s2
loc
+s2

err

)

+ k ln (n)

http://dipnet.github.io/popgenDB/
http://dipnet.github.io/popgenDB/
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evaluate significance, we randomly assigned localities for each of 
the 68 species to one of two “regions” and estimated pairwise ΦST 
between these two randomly drawn regions. We replicated this 
procedure 10 times to create 612 randomized ΦST values (repli‐
cates where all localities were assigned to only one region were 
thrown out). We compared median ΦST values for each putative 
barrier to the randomized median, with 95% confidence intervals 
for the medians established by bootstrapping 10,000 datasets, 
each containing 100 random samples of pairwise ΦST values from 
the original dataset. p‐values were calculated as the proportion of 
bootstrapped medians that were greater than the bootstrapped 
medians for the randomized datasets.

While pairwise ΦST values in marine systems tend to be low, there 
is no established set of expectations for these values. So, for com‐
parative purposes, we conducted a simulation of a simple allopatric 
event in fastsimcoal 2.6 (Excoffier & Foll, 2011) that reflects our best 
understanding of isolation due to low sea level stands during the 
Last Glacial Maximum (Crandall, Frey et al., 2008): 10,000 genera‐
tions ago (roughly 10–20 kya for a species with a 1–2 year genera‐
tion time), a single panmictic population with a half‐million effective 
individuals split into two populations of a quarter‐million effective 
individuals each, which experience no gene flow between them. 
From this scenario, we generated samples from each of the two 
populations of 20 non‐recombining haploid DNA sequences, 1,000 
base pairs in length, with a mutation rate of 5 × 10−8 per base pair 
per generation [i.e. mitochondrial DNA (mtDNA); Crandall, Sbrocco, 
DeBoer, Barber, & Carpenter, 2012]. This scenario was simulated 
1,000 times, and pairwise ΦST for each iteration was calculated using 
a batch version of arlsumstat (Excoffier & Lischer, 2010).

2.5 | Distance‐based redundancy analysis

To understand genetic diversification it is important to disentangle 
differentiation due to distance versus environmental and geographic 
barriers. To test whether genetic differentiation at regional bounda‐
ries was no more than expected based on overwater distance among 
sampling locations or was higher, possibly being indicative of other 
evolutionary processes such as historical isolation at low sea‐level 
stands, we used distance‐based redundancy analysis (dbRDA; 
Legendre & Anderson, 1999). dbRDA is a multivariate regression 
method that overcomes the issue of non‐independence inherent in 
Mantel tests and multiple regression with distance matrices (Guillot 
& Rousset, 2013) through constrained ordination on non‐Euclidean 
distance measures. Here, the distance matrix (pairwise ΦST val‐
ues between sampled population pairs) was ordinated via multidi‐
mensional scaling [MDS: capscale function in the R package vegan 
(Oksanen et al., 2017)] to yield population values along orthogonal 
eigenvectors; these vectors form the response variables in an RDA. 
Among our predictive variables, the measure of overwater distances 
was also initially formatted as distance matrices; here again we 
used ordination to convert these distance matrices to eigenvectors, 
choosing two dimensions as a reasonable representation of loca‐
tions along the Earth’s surface (employing MDS, with the cmdscale 

function in vegan). To predict the effects of putative barriers be‐
tween biogeographic regions, we used the merged regionalization 
from the two best‐supported regionalization models. Each region 
was then defined as a predictor of pairwise ΦST, with localities within 
each region scored as one, and those outside the region scored as 
zero. To investigate the effect of distance in the context of barriers 
we started with a null model of no effect of distance or barriers (ΦST 
~ 1) and used forward model selection to determine the minimal set 
of predictive variables. We used an adjusted R2 method appropriate 
for permuted data (Blanchet, Legendre, & Borcard, 2008) with the 
ordiR2step function in vegan. Model significances and significances 
of the individual MDS terms were assessed using 1,000 ANOVA‐like 
permutations (anova.cca function). We carried out dbRDA on 52 spe‐
cies analysed in the AMOVA after removing four species that had 
fewer than five sample locations.

3  | RESULTS

3.1 | The diversity of the Indo‐Pacific database

The DIPnet database represents the largest curated, publicly 
available collection of mtDNA sequences for phylogeographic 
comparisons. We received 162 submissions of sequence data, 
which included over 35,000 sequences. After strict quality con‐
trol and filtering (see Supporting Information Text S1 for details) 
the resulting database contained data from 238 marine spe‐
cies (230 from the Indo‐Pacific) across the phyla Arthropoda, 
Chordata, Cnidaria, Echinodermata and Mollusca based on eight 
mitochondrial gene regions. Data were sourced from 57 Indo‐
Pacific countries and >1,100 unique localities, spanning the en‐
tire Indo‐Pacific from the Red Sea to Rapa Nui (Easter Island). 
Sampling intensity, geographic coverage and completeness of 
the metadata submissions were variable (Figure 2), and 41 spe‐
cies were represented by more than one genetic marker. In the 
analyses presented here, we removed one of these markers to 
avoid pseudo‐replication (see Supporting Information Text S1 
for removal criteria). The raw sequence files and associated 
metadata can be searched and downloaded from the Genomic 
Observatories Metadatabase (GeOMe; https://www.geome-db.
org/; Deck et al., 2017), an open access repository for geographic 
and ecological metadata associated with biosamples and genetic 
data. The trimmed and aligned dataset used here is available at 
https://github.com/DIPnet/IPDB.

3.2 | Analysis of molecular variance and pairwise 
comparisons

AMOVA results showed mixed support for each of the hypotheses 
that we tested, with most species supporting those with the fewest 
biogeographic regions (Figures 3 and 4): Spalding et al.’s (2007) realms 
(k = 3, supported by 20 species) and Briggs and Bowen’s (2012) 
provinces (k = 5, supported by 18 species). These two hypotheses 
were followed by Kulbicki et al.’s (2013) realms (k = 3, supported by 13 

https://www.geome-db.org/
https://www.geome-db.org/
https://github.com/DIPnet/IPDB
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species) and provinces (k = 11, supported by 12 species). The hypoth‐
esis that received the least support was Spalding et al.’s (2007) 
ecoregions (k = 77, supported by one species). Results from AMOVAs 
based on ESUs identified by abgd showed an increase in taxa that sup‐
ported Briggs and Bowen (2012), indicating that Indian and Pacific 
Ocean populations of some taxa were diagnosed as cryptic species by 
this algorithm (Supporting Information Text S2). Results were not ap‐
preciably different when using FST instead of ΦST, nor when using ef‐

fect size (s2
reg
),ΦCT=

s2
reg

s2
tot

, or the Akaike information criterion as the 

criterion for model selection instead of the BIC (Supporting Information 
Text S2).

3.3 | Barrier strength analysis

Results of this analysis are summarized in Figure 5. When each data‐
set was randomly split into two sets of localities, ΦST ranged between 
0 and 0.92, with median pairwise ΦST being 0.003 [95% confidence 

interval (CI) 0.0003–0.008, 38% of values were zero]. Median pair‐
wise ΦST between the Western Indian Ocean Province proposed by 
Briggs and Bowen (2012) and the Western Indo‐Pacific Realm pro‐
posed by Spalding et al. (2007) was 0.018 (Figure 5; bootstrapped 
95% CI 0.000–0.079, 35% zeros), which was not significantly greater 
than the median of the randomized dataset (p = 0.12). Median pair‐
wise ΦST = 0.021 between the Western Indo‐Pacific and the Central 
Indo‐Pacific Realms of Spalding et al. (the Indo‐Pacific Barrier; boot‐
strapped 95% CI 0.003–0.037, 24% zeros) was significantly greater 
than the median of the randomized dataset (p = 0.025). A similar pat‐
tern was observed between the Central Indo‐Pacific and the Eastern 
Indo‐Pacific (median pairwise ΦST = 0.015, 95% CI 0.005–0.022, 
22% zeros, significant at p = 0.01). Barriers delimiting peripheral ar‐
chipelagos had higher median ΦST and higher variance. The bound‐
ary between the Eastern Indo‐Pacific and the Hawaiian Province of 
Briggs and Bowen (2012) had a median pairwise ΦST of 0.051 (95% 
CI 0.002–0.096, 32% zeros, significant at p = 0.046), while a simi‐
lar comparison with the Marquesan Province had a median pairwise 

F I G U R E  2  Density maps showing the distribution of species and sequences in the DIPnet database. The total number of species (a) and 
total number of sequences (b) within a 250‐km radius moving window are shown with a linear colour ramp. Sample points are shown as black 
points. Hotspots are saturated at a maximum value of 30 species (a) and 1,000 sequences (b), although higher values exist. For reference, 
Hawai’i contains 52 species and 2,300 sequences, a region south of Sulawesi has 32 species and 1,000 sequences, and Fiji contains 18 
species and 300 sequences. The scope of the whole database is shown, but analyses were limited to the Indo‐Pacific
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ΦST of 0.028 (95% CI 0.000–0.076, 45% zeros, not significant at 
p = 0.28). The simple simulation of allopatric divergence yielded ΦST 
values ranging from 0–0.42 with a median pairwise ΦST of 0.023, 
(95% CI 0.01–0.034, 33% zeros, significantly greater than the me‐
dian of the randomized dataset at p = 0.003). Pairwise values for 
both ΦST and FST are available in Supporting Information Tables 
S2 and S3, and violin plots of the full distribution of values may be 
found in Supporting Information Figure S1.

3.4 | Distance‐based redundancy analysis

In the dbRDA analysis, 21 out of 52 species (four species had less than 
five sampling sites and were removed) rejected the null model of no 
spatial differentiation (Figure 6). Six had significant variance explained 
only by regional structure, 10 had significant variance explained only 
by overwater distance (mostly in the zonal, or east–west dimension), 
and five species had significant variance explained by both regional 
structure and overwater distance. The percentage of inertia con‐
strained (similar to variance explained) in each model tested was gen‐
erally less than 25%. Plots of ΦST versus distance for all species can be 
found in Supporting Information Figure S2.

4  | DISCUSSION

Here we conduct comparative phylogeographic analysis of over 50 
taxonomically and ecologically diverse marine species distributed 
across the Indo‐Pacific. Novel methodology in a model selection 
framework returned a diversity of results, as expected when com‐
paring lineages separated by over half a billion years of evolution, but 
favoured regionalization models with fewer regions. Approximately 
60% of the species examined supported biogeographic partitions 
based on five or fewer regions (Figure 4: Spalding et al.’s Realms, 
Briggs & Bowen’s Provinces and Kulbicki et al.’s Regions). This re‐
sult, which is not a statistical artefact as indicated by analyses of 
multiple alternative criteria in Supporting Information Text S2, sug‐
gests that on the scale of the entire Indo‐Pacific Ocean, there is only 
a loose relationship between species distributions and population 
genetic structure, although there can be more concordance at finer 
geographic scales (see DeBoer et al., 2014). Kelly and Palumbi (2010) 
report similar discordance between biogeography and phylogeogra‐
phy at broad spatial scales along the west coast of North America.

Comparative phylogeographic analyses provided broad sup‐
port for two barriers to gene flow that are well characterized in  

F I G U R E  3  Heatmap of relative probability scores based on analysis of molecular variance (AMOVA) Bayesian information criterion (BIC) 
estimates for each of the eight regionalization hypotheses. Grey shading indicates hypotheses that were not testable based on available 
samples for a particular species and “k” indicates the number of proposed Indo‐Pacific biogeographic regions. Hypotheses are arranged in 
order of increasing number of regions. Locus abbreviations: CO1 = cytochrome oxidase subunit 1; CR = control region; CYB = cytochrome B; 
ND1 = Nicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase subunit 1; A68 = ATPase 6 and 8 region
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the literature (Figure 5). These barriers are the relative isolation of 
the Hawaiian Aarchipelago (Bowen et al., 2016) and the intermittent 
Indo‐Pacific Barrier (Benzie, 1999; Cannon, Morley, & Bush, 2009; 
Ludt & Rocha, 2014), which is located along the western edge of  
the Sunda Shelf and has strengthened during low sea‐level stands. 
There is also support for a less appreciated barrier between the con‐
tinental and uplifted islands of the Central Indo‐Pacific and the vol‐
canic island arcs of the Eastern Indo‐Pacific (Vermeij, 1987). These 
three areas of concordant differentiation indicate the presence 
of broadly acting, pronounced filters to dispersal and gene flow 
(Avise, 2000) that likely contribute to diversification of Indo‐Pacific 
marine fauna.

Despite the clear presence of filters in the Indo‐Pacific region, 
the distribution of pairwise ΦST (Figure 5) with respect to each of 
these barriers was relatively low (in comparison to values obtained 
for terrestrial species; Medina, Cooke, & Ord, 2018) as expected 
from a fluid environment with high potential for significant dispersal 
(Riginos, Crandall, Liggins, Bongaerts, & Treml, 2016). Median values 
ranged between 0.018 and 0.051 and many species registered little 
or no genetic turnover across each barrier (22% to 45% with ΦST = 
0). However, three of these median values were significantly greater 
than what would be found if populations were randomly distributed. 
Typically, such limited genetic structure might be overlooked in a 

single‐species study. However, the comparative approach taken in 
this study allowed emergent patterns to materialize, highlighting the 
value of large comparative datasets, particularly in high dispersal, 
high gene flow systems [see Paulay and Meyer (2002) for counterex‐
amples from marine species with low dispersal capability].

4.1 | Origins of discordance between 
biogeography and phylogeography

Although there was modest concordance between phylogeographic 
patterns and regionalization models with the fewest partitions, there 
was substantial discordance among species. The biogeographic clas‐
sifications comprising fewer regions seem to reflect the influence of 
broad‐scale physical processes that have separated geographic re‐
gions over time. In contrast, regionalizations with higher numbers of 
regions may reflect local‐scale environmental differences that may 
have only manifested over recent time‐scales or else have affected 
species differently. Our results indicate that, at least for putatively 
neutral loci at a local scale, these contemporary environmental dif‐
ferences may not contribute much to genetic structuring in Indo‐
Pacific species (Benzie, 1999; Horne, 2014b, although see DeBoer 
et al., 2014), a pattern consistent with data at the genomic scale as 
well (Gaither et al., 2015).

F I G U R E  4  Proportional support by species for each regionalization hypothesis, with “k” indicating the number of proposed Indo‐Pacific 
biogeographic regions. Colours depict the taxonomic distribution for each hypothesis—phyla for invertebrates and families for chordates. 
Hypotheses are arranged in order of increasing number of regions
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Another explanation for the differences among Indo‐Pacific spe‐
cies in the degree of genetic structure and best‐supported regional‐
ization could reflect the dynamic nature and geographic variability 
of evolutionary and ecological processes, including rates of species 
origin, survival and export (Cowman & Bellwood, 2013). For exam‐
ple, the shallow shelves of the Indo‐Malay‐Philippine Archipelago 
that Spalding (2007) breaks into more than 20 ecoregions experi‐
enced pronounced changes in sea level (Voris, 2000). These cycles 
of exposure and flooding tend to homogenize the distribution of 
genetic variation on continental shelves (Benzie, 1999; Crandall, 

Sbrocco et al., 2012) and could also modify species distributions 
or drive local extinctions that impact biogeographic regionalization 
models. Combined, these processes could result in a decoupling be‐
tween contemporary environments and species distributions used 
in biogeographic models and non‐equilibrium patterns of genetic 
variation.

Another potential source of discordance are sampling biases. 
There is a clear lack of co‐sampling among the disparate research 
groups that contributed data. Figure 2 shows clear hotspots in inves‐
tigator effort, a pattern previously highlighted by Keyse et al. (2014). 

F I G U R E  5  Median and 95% bootstrapped confidence intervals for pairwise ΦST calculated between each of six regions of the merged 
regionalization. Also depicted are the same values for 1,000 datasets simulated under a scenario of allopatric divergence starting 10,000 
generations ago, as well as a randomized dataset in which population samples were randomly allocated to one of two regions. Each putative 
barrier between regions is drawn as a black line on the map, with solid lines depicting barriers with median ΦST that is significantly greater 
than random expectation

n n n n n n n1,000
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As noted above, average genetic structure was relatively low, requir‐
ing comparison of large numbers of taxa to elucidate regional con‐
cordance. Given variation in sampling effort across the Indo‐Pacific 
region, it is possible that increased sampling (and increased sample 
sizes) could result in more support for more highly subdivided re‐
gionalizations. Similarly, there is a sampling bias in Indo‐Pacific phy‐
logeography toward widely distributed taxa with planktotrophic 
larvae, and our analysis strengthened that bias by tending to select 
well‐sampled species with large ranges. More geographically distrib‐
uted data are needed from species with limited dispersal capability 
(e.g. Meyer, Geller, & Paulay, 2005).

Rather than being a sampling artefact, simulated allopatric diver‐
gence scenarios over 10,000 generations (Figure 5) suggest that the 

absence of stronger concordance between biogeographic regional‐
izations and phylogeographic patterns may simply be a function of 
genetic drift. These simulations yielded ΦST distributions similar to 
empirical data observed across each putative barrier, including 33% 
of the iterations measuring ΦST = 0. This result suggests that, given 
realistic coalescent effective sizes for Indo‐Pacific species of 100,000 
individuals or more (Crandall, Frey et al., 2008; Crandall, Jones et al., 
2008), genetic drift is often too weak to establish much genetic struc‐
ture over the time‐scales of historical environmental fluctuations that 
are several orders of magnitude smaller than the effective sizes of 
Indo‐Pacific species (Pillans, Chappell, & Naish, 1998).

When genetic drift does establish genetic structure, there can 
be enormous variance in magnitude. The simulated values of ΦST 

F I G U R E  6  Proportion of constrained inertia in ordinated pairwise ΦST values that can be attributed to either overwater distance (zonal or 
meridional components) or to putative barriers to gene flow hypothesized by the merged regionalization. Results are only shown for species 
that rejected the null model of no relationship between ΦST and distance and barriers. Silhouettes of taxa were traces by P. F. Cowman from 
photos found on reeflifesurvey.com, sealifebase.org and fishesofaustralia.com.au

https://www.reeflifesurvey.com
http://www.sealifebase.org
http://www.fishesofaustralia.com.au
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ranged from 0 to 0.42, providing further insight into the overall lack 
of concordance in our AMOVA results. For populations of any given 
Indo‐Pacific species that have been allopatrically isolated for 10,000 
generations, ΦST can range between 0 and almost 0.5, with a high 
probability that it will be 0. Marine genetic structure is blurred by the 
stochasticity of genetic drift (Hellberg, 2009). These results highlight 
the challenge of identifying biogeographic processes and patterns in 
marine systems using single‐species studies, and the power of large‐
scale comparative phylogeographic meta‐analyses.

4.2 | Distance or barriers?

Our results from dbRDA demonstrate that, while there is much stochas‐
ticity in pairwise ΦST values, distance is the most important predictor of 
genetic differentiation at the scale of the Indo‐Pacific based on the vari‐
ables that we included in our models. Overall, only 40% of species that 
we tested rejected the null model of no effect of distance or barriers, and 
only 29% included distance in the best dbRDA model. This may seem 
low, given that species dispersal via pelagic larvae should be expected to 
conform to a model of isolation‐by‐distance (IBD), but it is comparable 
to the proportion of species demonstrating IBD across all marine spe‐
cies (c. 33%; Selkoe & Toonen, 2011; Selkoe et al., 2016). It may be that 
mtDNA is not well suited to detection of IBD due to rampant selection 
along its non‐recombining length (Teske et al., 2018), or the relationship 
may simply be obscured by genetic drift as discussed above.

While dbRDA is able to deal with non‐independence in genetic 
and geographic distances, it appears to sacrifice some power to do 
so, as there were several species that displayed trends in ΦST versus 
overwater distance but did not reject the null model (see Supporting 
Information Figure S2). While distance was the most important vari‐
able, there were still 21% of species for which the merged amalgama‐
tion of the Briggs & Bowen and Spalding regionalizations constrained 
some proportion of model inertia. This indicates that physical barri‐
ers (such as the Sunda Shelf) or environmental barriers/filters, while 
potentially important locally, may play a more limited role in genetic 
differentiation across the broader Indo‐Pacific.

4.3 | Conclusions

In conclusion, our large‐scale phylogeographic survey of the Indo‐
Pacific yields inconsistent support for various biogeographic hy‐
potheses, with most species supporting relatively coarse‐grain 
biogeographic divisions. A simple interpretation of this result would be 
that the Indo‐Pacific is well connected by propagule‐mediated gene 
flow (Mora et al., 2012). However, our simulation results show that 
F‐statistics are often an unreliable indicator of divergence processes 
when the effective size of a species significantly surpasses the time‐
scale of divergence. In other words, most species in the Indo‐Pacific 
are likely out of equilibrium with respect to gene flow and genetic drift 
(Hellberg, 2009), with the broad similarities in allele frequencies across 
the region likely reflecting historical processes including extinction–
recolonization dynamics (Horne, 2014b), or ongoing gene flow that is 
evolutionarily significant but not ecologically relevant (Crandall, Treml, 

& Barber, 2012; Crandall, Toonen, ToBo Laboratory, & Selkoe, 2019; 
Matias & Riginos, 2018). Hence, there may be more isolation among 
Indo‐Pacific reefs than is indicated in our results.

Despite leveraging the largest phylogeographic dataset to date, our 
analysis was somewhat hampered by a lack of taxonomic coordination 
and overlap among sample locations (Keyse et al., 2014). Future studies 
in the region would profit from a coordinated sampling strategy, wherein 
principal investigators agree to co‐sample a fixed set of taxa through‐
out the Indo‐Pacific, including the collection of extensive georeferenced 
metadata to accompany each sample. Future seascape genetic studies in 
the Indo‐Pacific will also benefit from the addition of thousands of loci 
generated by massively parallel methods (Gaither et al., 2015; Saenz‐
Agudelo et al., 2015), which can be used with analyses based on coales‐
cent simulations and linkage equilibrium in addition to allele frequencies 
to resolve genetic structure over much shorter time‐scales (Crandall  
et al., 2019; Crandall, Treml et al., 2012; Matias & Riginos, 2018).

The current dataset forms the core of the Genomic Observatories 
Metadatabase (GeOMe; Deck et al., 2017), which facilitates coor‐
dinated sampling strategies and metadata collection and curation. 
GeOMe creates a permanent link between occurrence metadata and 
genetic sequences (both FASTA and FASTQ formats) submitted to the 
International Nucleotide Sequence Database Collaboration (i.e. National 
Center for Biotechnology Information, NCBI; European Molecular 
Biology Laboratory, EMBL; DNA Data Bank of Japan, DDBJ). GeOMe is 
a searchable database thereby allowing researchers to determine sam‐
ple coverage in terms of both taxonomy and geography. We also make 
available our analysis pipeline (https://github.com/DIPnet/popgenDB) 
in support of multispecies comparative phylogeography initiatives.
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