116 research outputs found
Strategies to mitigate student resistance to active learning
Abstract
Background
Research has shown that active learning promotes student learning and increases retention rates of STEM undergraduates. Yet, instructors are reluctant to change their teaching approaches for several reasons, including a fear of student resistance to active learning. This paper addresses this issue by building on our prior work which demonstrates that certain instructor strategies can positively influence student responses to active learning. We present an analysis of interview data from 17 engineering professors across the USA about the ways they use strategies to reduce student resistance to active learning in their undergraduate engineering courses.
Results
Our data reveal that instructor strategies for reducing student resistance generally fall within two broad types: explanation and facilitation strategies. Explanation strategies consist of the following: (a) explain the purpose, (b) explain course expectations, and (c) explain activity expectations. Facilitation strategies include the following: (a) approach non-participants, (b) assume an encouraging demeanor, (c) grade on participation, (d) walk around the room, (e) invite questions, (f) develop a routine, (g) design activities for participation, and (h) use incremental steps. Four of the strategies emerged from our analysis and were previously unstudied in the context of student resistance.
Conclusions
The findings of this study have practical implications for instructors wishing to implement active learning. There is a variety of strategies to reduce student resistance to active learning, and there are multiple successful ways to implement the strategies. Importantly, effective use of strategies requires some degree of intentional course planning. These strategies should be considered as a starting point for instructors seeking to better incorporate the use of active learning strategies into their undergraduate engineering classrooms.https://deepblue.lib.umich.edu/bitstream/2027.42/142791/1/40594_2018_Article_102.pd
Differences in satiety effects of alginate- and whey protein-based foods
Satiety is important in regulating food intake and has important public health significance in the control of obesity. Food containing protein and non-starch polysaccharides provides a satiety effect through various mechanisms but a comparison of the satiety effect on each has not previously been investigated. This study compared the satiety effect or reduction of hunger after consumption of (i) a whey proteinbased drink versus an alginate-based drink of the same viscosity where only the protein content differed, (ii) two alginate-based drinks differing in alginate type and viscosity, and (iii) a whey protein-based drink versus an alginate-based drink differing in protein content and viscosity. Fasted subjects assessed the effect of a drink on hunger that was one of three variants: a low viscosity whey protein drink (LVHP); a high viscosity low protein alginate-based drink (HVLP); or a low viscosity low protein alginate-based drink (LVLP) over the 240 min postprandial period using a Visual Analogue Scale (VAS). When protein differed and viscosity was the same, results showed subjects felt significantly less hungry after consuming the LVHP drink compared to the LVLP drink, so protein reduced hunger. Subjects reported reduced hunger from the HVLP drink compared to the LVLP drink where viscosity of drinks differed, suggesting viscosity and/or gelation reduced hunger. Subjects reported reduced hunger from the HVLP drink compared to LVHP drink where both protein and viscosity differed, suggesting that viscosity reduced hunger more than the protein effect. Results suggest the physical characteristics such as viscosity and/or gel strength and protein content reduce hunger. Further studies should investigate which of these parameters is more important
Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.
Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed
T cells establish and maintain CNS viral infection in HIV-infected humanized mice
The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell–only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/ CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state
Local Inflammation Induces Complement Crosstalk Which Amplifies the Antimicrobial Response
By eliciting inflammatory responses, the human immunosurveillance system notably combats invading pathogens, during which acute phase proteins (CRP and cytokines) are elevated markedly. However, the Pseudomonas aeruginosa is a persistent opportunistic pathogen prevalent at the site of local inflammation, and its acquisition of multiple antibiotic-resistance factors poses grave challenges to patient healthcare management. Using blood samples from infected patients, we demonstrate that P. aeruginosa is effectively killed in the plasma under defined local infection-inflammation condition, where slight acidosis and reduced calcium levels (pH 6.5, 2 mM calcium) typically prevail. We showed that this powerful antimicrobial activity is provoked by crosstalk between two plasma proteins; CRP∶L-ficolin interaction led to communication between the complement classical and lectin pathways from which two amplification events emerged. Assays for C4 deposition, phagocytosis, and protein competition consistently proved the functional significance of the amplification pathways in boosting complement-mediated antimicrobial activity. The infection-inflammation condition induced a 100-fold increase in CRP∶L-ficolin interaction in a pH- and calcium-sensitive manner. We conclude that the infection-induced local inflammatory conditions trigger a strong interaction between CRP∶L-ficolin, eliciting complement-amplification pathways which are autonomous and which co-exist with and reinforce the classical and lectin pathways. Our findings provide new insights into the host immune response to P. aeruginosa infection under pathological conditions and the potential development of new therapeutic strategies against bacterial infection
HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes
Non disponibil
- …