79 research outputs found

    L'invettiva contro Gildone.Motivi di propaganda politica e prassi letteraria.(Per un commento a Claud.carm.15)

    Get PDF
    2006/2007L’indagine ha permesso di mettere in luce la complessità di un poema che è prima di tutto un’opera a sostegno della politica di Stilicone e contiene un messaggio, duplice (di rimprovero e parenetico), inviato all’Oriente dell’Impero relativo alla necessaria concordia fra le due parti e fra i fratelli reggenti, Onorio e Arcadio. Claudiano eleva a dignità epica un episodio politico-militare la cui conclusione, più che da una vera e propria battaglia (che nella realtà non avvenne mai), era stato determinato dall’abile strategia di Stilicone. La specificità dell’opera consiste in una elevata cifra retorica dell’elemento panegiristico di cui si è fornita documentazione. La condanna di Stilicone come hostis publicus, da parte della corte orientale, obbliga il poeta ad assegnare al generale vandalo un ruolo di secondo piano e determina l’impossibilità di attribuirgli una responsabilità diretta nella risoluzione della vicenda gildonica. Tale condizionamento storico-politico si traduce in una strategia narrativa in cui il soggetto centrale del racconto diventa Gildone, il nemico o piuttosto l’anti-eroe, a cui si contrappone in modo implicito (esplicito raramente) proprio Stilicone. Stilicone incarna così l’eroe della tradizione romana, rispettoso della fides verso i familiari (in qualità di suocero di Onorio) e la patria. Le azioni del generale vandalo sono exempla di pietas e in netta antitesi con quelle di Gildone che però non compare mai come attore nella vicenda. L’opposizione tra i due si traduce in definitiva nella vittoria morale di Stilicone. Il generale vandalo, compie il suo ingresso nel finale del poema (352), preparato dall’encomio ad opera di Teodosio il Grande. Nel poema dunque la vittoria su Gildone non viene descritta mediante il racconto dei fatti, ma è sancita sul piano etico per mezzo della contrapposizione fra i due antagonisti. Il presente lavoro cerca di mettere in luce le ragioni che nell’In Gildonem hanno determinato il silenzio di Claudiano sugli antefatti e sulle operazioni in rapporto al più dettagliato resoconto della vicenda e al vero e proprio panegirico di Stilicone nella successiva Laus. Il confronto fra le due opere indurrebbe infatti a individuare nella prima una sorta di anticipazione dei motivi enfatizzati, senza reticenze, nella Laus. In questa prospettiva di lettura le due opere risultano complementari e ciò permetterebbe di superare la posizione della critica (Döpp 1980, Hajdu 1996-1997, Charlet 2000) che ritiene l’In Gildonem incompiuto tanto da ipotizzare la mancata pubblicazione di un secondo libro.XX Ciclo198

    The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM)

    Get PDF
    Geologic archives constraining the variability of the Greenland ice sheet (GrIS) during the Holocene provide targets for ice sheet models to test sensitivities to variations in past climate and model formulation. Even as data–model comparisons are becoming more common, many models simulating the behavior of the GrIS during the past rely on meshes with coarse horizontal resolutions (≥10&thinsp;km). In this study, we explore the impact of model resolution on the simulated nature of retreat across southwestern Greenland during the Holocene. Four simulations are performed using the Ice Sheet System Model (ISSM): three that use a uniform mesh and horizontal mesh resolutions of 20, 10, and 5&thinsp;km, and one that uses a nonuniform mesh with a resolution ranging from 2 to 15&thinsp;km. We find that the simulated retreat can vary significantly between models with different horizontal resolutions based on how well the bed topography is resolved. In areas of low topographic relief, the horizontal resolution plays a negligible role in simulated differences in retreat, with each model instead responding similarly to retreat driven by surface mass balance (SMB). Conversely, in areas where the bed topography is complex and high in relief, such as fjords, the lower-resolution models (10 and 20&thinsp;km) simulate unrealistic retreat that occurs as ice surface lowering intersects bumps in the bed topography that would otherwise be resolved as troughs using the higher-resolution grids. Our results highlight the important role that high-resolution grids play in simulating retreat in areas of complex bed topography, but also suggest that models using nonuniform grids can save computational resources through coarsening the mesh in areas of noncomplex bed topography where the SMB predominantly drives retreat. Additionally, these results emphasize that care must be taken with ice sheet models when tuning model parameters to match reconstructed margins, particularly for lower-resolution models in regions where complex bed topography is poorly resolved.</p

    The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6

    Get PDF
    The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90±50 and 32±17 mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean

    Strategies for preventing group B streptococcal infections in newborns: A nation-wide survey of Italian policies

    Get PDF

    Implementation of higher-order vertical finite elements in ISSM v4.13 for improved ice sheet flow modeling over paleoclimate timescales

    No full text
    Paleoclimate proxies are being used in conjunction with ice sheet modeling experiments to determine how the Greenland ice sheet responded to past changes, particularly during the last deglaciation. Although these comparisons have been a critical component in our understanding of the Greenland ice sheet sensitivity to past warming, they often rely on modeling experiments that favor minimizing computational expense over increased model physics. Over Paleoclimate timescales, simulating the thermal structure of the ice sheet has large implications on the modeled ice viscosity, which can feedback onto the basal sliding and ice flow. To accurately capture the thermal field, models often require a high number of vertical layers. This is not the case for the stress balance computation, however, where a high vertical resolution is not necessary. Consequently, since stress balance and thermal equations are generally performed on the same mesh, more time is spent on the stress balance computation than is otherwise necessary. For these reasons, running a higher-order ice sheet model (e.g., Blatter-Pattyn) over timescales equivalent to the paleoclimate record has not been possible without incurring a large computational expense. To mitigate this issue, we propose a method that can be implemented within ice sheet models, whereby the vertical interpolation along the z axis relies on higher-order polynomials, rather than the traditional linear interpolation. This method is tested within the Ice Sheet System Model (ISSM) using quadratic and cubic finite elements for the vertical interpolation on an idealized case and a realistic Greenland configuration. A transient experiment for the ice thickness evolution of a single-dome ice sheet demonstrates improved accuracy using the higher-order vertical interpolation compared to models using the linear vertical interpolation, despite having fewer degrees of freedom. This method is also shown to improve a model's ability to capture sharp thermal gradients in an ice sheet particularly close to the bed, when compared to models using a linear vertical interpolation. This is corroborated in a thermal steady-state simulation of the Greenland ice sheet using a higher-order model. In general, we find that using a higher-order vertical interpolation decreases the need for a high number of vertical layers, while dramatically reducing model runtime for transient simulations. Results indicate that when using a higher-order vertical interpolation, runtimes for a transient ice sheet relaxation are upwards of 5 to 7 times faster than using a model which has a linear vertical interpolation, and this thus requires a higher number of vertical layers to achieve a similar result in simulated ice volume, basal temperature, and ice divide thickness. The findings suggest that this method will allow higher-order models to be used in studies investigating ice sheet behavior over paleoclimate timescales at a fraction of the computational cost than would otherwise be needed for a model using a linear vertical interpolation
    corecore