74 research outputs found

    Engaging End-users to Inform the Development of the Global Standard for the Identification of Key Biodiversity Areas

    Get PDF
    We report results from an end-user engagement process, convened by the International Union for Conservation of Nature (IUCN), which informed the development of the Global Standard for the Identification of Key Biodiversity Areas. Key Biodiversity Areas are sites contributing significantly to the global persistence of biodiversity. We used a mixed methods approach involving interviews and an online questionnaire with end-users to determine their needs and concerns in relation to the Key Biodiversity Area approach. We found a remarkable level of convergence in end-user opinion on 12 important topics. Four topics resulted in a divergence in end-user opinion requiring further dialogue and consideration, including: (i) the value of a global standard compared to various national approaches; (ii) the prioritisation of Key Biodiversity Areas over other areas; (iii) whether Key Biodiversity Area data should be made freely available; and (iv) whether or not development activities should be permitted in Key Biodiversity Areas. Our results informed the development of the Global Standard for the Identification of Key Biodiversity Areas and a new governance structure, the Key Biodiversity Area Consultative Forum, which provides a mechanism for ongoing dialogue with end-users. We conclude by sharing five good practice recommendations for future end-user engagement processes

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpredefinedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?

    Get PDF
    ‘Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326–337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for ‘threatened species' to consider ‘threatened taxa’ and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites

    Conservation status of a recently described endemic land snail, Candidula coudensis, from the Iberian Peninsula

    Get PDF
    Research ArticleWe assessed the distribution, population size and conservation status of Candidula coudensis, a recently described endemic land snail from Portugal. From March 2013 to April 2014, surveys were carried out in the region where the species was described. We found an extent of occurrence larger than originally described, but still quite small (13.5 km2). The species was found mainly in olive groves, although it occurred in a variety of other habitats with limestone soils, including grasslands, scrublands and stone walls. Minimum population estimate ranged from 110,000–311,000 individuals. The main identified potential threats to the species include wildfires, pesticides and quarrying. Following the application of IUCN criteria, we advise a conservation status of either “Least Concern” or “Near-threatened” under criterion D (restricted population)info:eu-repo/semantics/publishedVersio

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160 million (range: US116-204 million), plus 293 person-years of volunteer time (range: 278-308 person-years) valued at US14million(rangeUS 14 million (range US12-16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013 ) is US6.5millionintotal(range:US6.5 million in total (range: US6.2-6.7 million). We estimated that an additional US114millionwillbeneededtoreachpredefinedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmaintenancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical

    The influence of the landscape structure within buffer zones, catchment land use and instream environmental variables on mollusc communities in a medium-sized lowland river

    Get PDF
    The world’s freshwater molluscan fauna is facing unprecedented threats from habitat loss and degradation. Declines in native populations are mostly attributed to the human impact, which results in reduced water quality. The objectives of our survey were to analyse the structure of the mollusc communities in a medium-sized lowland river and to determine the most important environmental variables at different spatial scales, including landscape structure, catchment land use and instream environmental factors that influence their structure. Our survey showed that a medium-sized river, that flows through areas included in the European Ecological Natura 2000 Network Programme of protected sites, provides diverse instream habitats and niches that support 47 mollusc species including Unio crassus, a bivalve of Community interest, whose conservation requires the designation of a special conservation area under the Habitats Directive Natura 2000. This survey showed that mollusc communities are impacted by several environmental variables that act together at multiple scales. The landscape structure within buffer zones, catchment land use and instream environmental variables were all important and influenced the structure of mollusc communities. Therefore, they should all be taken into consideration in the future restoration of the river, future management projects and programmes for the conservation of biodiversity in running waters. The results of this study may be directly applicable for the rehabilitation of river ecosystems and are recommended to stakeholders in their future decision concerning landscape planning, monitoring species and their habitats, conservation plans and management in accordance with the requirements of sustainable development

    The conservation status of the world's freshwater molluscs

    Get PDF
    With the biodiversity crisis continuing unchecked, we need to establish levels and drivers of extinction risk, and reassessments over time, to effectively allocate conservation resources and track progress towards global conservation targets. Given that threat appears particularly high in freshwaters, we assessed the extinction risk of 1428 randomly selected freshwater molluscs using the IUCN Red List Categories and Criteria, as part of the Sampled Red List Index project. We show that close to one-third of species in our sample are estimated to be threatened with extinction, with highest levels of threat in the Nearctic, Palearctic and Australasia and among gastropods. Threat levels were higher in lotic than lentic systems. Pollution (chemical and physical) and the modification of natural systems (e.g. through damming and water abstraction) were the most frequently reported threats to freshwater molluscs, with some regional variation. Given that we found little spatial congruence between species richness patterns of freshwater molluscs and other freshwater taxa, apart from crayfish, new additional conservation priority areas emerged from our study. We discuss the implications of our findings for freshwater mollusc conservation, the adequacy of a sampled approach and important next steps to estimate trends in freshwater mollusc extinction risk over time

    Utility of In Vivo Transcription Profiling for Identifying Pseudomonas aeruginosa Genes Needed for Gastrointestinal Colonization and Dissemination

    Get PDF
    Microarray analysis of Pseudomonas aeruginosa mRNA transcripts expressed in vivo during animal infection has not been previously used to investigate potential virulence factors needed in this setting. We compared mRNA expression in bacterial cells recovered from the gastrointestinal (GI) tracts of P. aeruginosa-colonized mice to that of P. aeruginosa in the drinking water used to colonize the mice. Genes associated with biofilm formation and type III secretion (T3SS) had markedly increased expression in the GI tract. A non-redundant transposon library in P. aeruginosa strain PA14 was used to test mutants in genes identified as having increased transcription during in vivo colonization. All of the Tn-library mutants in biofilm-associated genes had an attenuated ability to form biofilms in vitro, but there were no significant differences in GI colonization and dissemination between these mutants and WT P. aeruginosa PA14. To evaluate T3SS factors, we tested GI colonization and neutropenia-induced dissemination of both deletional (PAO1 and PAK) and insertional (PA14) mutants in four genes in the P. aeruginosa T3SS, exoS or exoU, exoT, and popB. There were no significant differences in GI colonization among these mutant strains and their WT counterparts, whereas rates of survival following dissemination were significantly decreased in mice infected by the T3SS mutant strains. However, there was a variable, strain-dependent effect on overall survival between parental and T3SS mutants. Thus, increased transcription of genes during in vivo murine GI colonization is not predictive of an essential role for the gene product in either colonization or overall survival following induction of neutropenia

    Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area

    Get PDF
    Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.This work was funded by GUADALMED-II (REN2001-3438-C07-06/HID), a project of excellence from “Junta de Andalucía” (RNM-02654/FEDER), the Spanish “Ministerio de Ciencia e Innovación” (CGL2007-61856/BOS), projects and a collaboration agreement between the “Spanish Ministerio de Medio Ambiente, Medio Rural y Marino” and the University of Granada (21.812-0062/8511)
    corecore