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‘Key biodiversity areas’ are defined as sites contributing significantly to the

global persistence of biodiversity. The identification of these sites builds

from existing approaches based on measures of species and ecosystem diver-

sity and process. Here, we therefore build from the work of Sgró et al. (2011

Evol. Appl. 4, 326–337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a fra-

mework for how components of genetic diversity might be considered in the

identification of key biodiversity areas. We make three recommendations to

inform the ongoing process of consolidating a key biodiversity areas standard:

(i) thresholds for the threatened species criterion currently consider a site’s

share of a threatened species’ population; expand these to include the pro-

portion of the species’ genetic diversity unique to a site; (ii) expand criterion

for ‘threatened species’ to consider ‘threatened taxa’ and (iii) expand the

centre of endemism criterion to identify as key biodiversity areas those sites

holding a threshold proportion of the compositional or phylogenetic diversity

of species (within a taxonomic group) whose restricted ranges collectively

define a centre of endemism. We also recommend consideration of occurrence

of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity

areas to prioritize species-specific conservation actions among sites.

1. Introduction
Two notable features characterize life on Earth in the twenty-first century: its dis-

tribution around the planet’s surface is highly uneven and its diversity is

declining fast [1]. Given this, many sectors of society demand information on

the places which make disproportionate contributions to the persistence of biodi-

versity. Maybe most notable among these is the Convention on Biological

Diversity, for which the 193 Parties have established a target to protect ‘at least

17 per cent of terrestrial and inland water, and 10 per cent of coastal and

marine areas, especially areas of particular importance for biodiversity . . . ’ by

2020 [2,3]. However, this demand spans sectors of society including other inter-

national conventions, national and local government, the multilateral financial

institutions, the private sector, and local and indigenous communities [4].

In response to this demand, numerous systems have been developed for

identifying important sites for biodiversity for different taxonomic groups,

different ecosystems, and different countries and regions. The earliest such

efforts were initiated by what is now the BirdLife International partnership,

which developed standards for the identification of Important Bird Areas in

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
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the late 1970s [5], and has now applied these in each of the

world’s countries to identify more than 10 000 sites globally

[6]. Similar approaches have been developed for the identifi-

cation of Important Plant Areas [7], Prime Butterfly Areas [8],

Alliance for Zero Extinction sites [9], ‘B-ranked’ sites in North

America [10] and key biodiversity areas in freshwater [11]

and marine [12] ecosystems, among others. These approaches

have used four types of criteria to trigger site identification,

based on the presence in the site of threshold quantities of (A)

threatened species, (B) restricted-range species assemblages or

centres of endemism, (C) species characteristic of a particular

ecosystem or (D) species congregations and aggregations.

However, while these taxon-, ecosystem- and theme-specific

approaches to the identification of important sites have delivered

substantial benefits by providing information on where site safe-

guard can make the greatest contributions towards reducing the

rate of biodiversity loss [6], the proliferation of such approaches

has also generated duplication of effort and policy confusion.

In response to this, the approximately 200 government and gov-

ernment agencies and approximately 1000 non-governmental

organizations that comprise the membership of the International

Union for the Conservation of Nature (IUCN) passed a resolution

at the 2004 World Conservation Congress in Bangkok which

‘requests the SSC, working in partnership with IUCN members,

to convene a worldwide consultative process to agree a method-

ology to enable countries to identify Key Biodiversity Areas,

drawing on data from the IUCN Red List of Threatened Species

and other datasets, building on existing approaches’.

Over the last decade, the IUCN Species Survival Commis-

sion and World Commission on Protected Areas have been

jointly leading this process. Building from an initial scientific

paper [13], constructive debate in the scientific literature

[14,15] and best practice guidelines [4], the two Commissions

convened a ‘framing workshop’ in Cambridge in June 2012.

This workshop, bringing together 66 participants (from 52

organizations across 19 countries) from across science,

policy and practice, forged a common definition of key biodi-

versity areas: sites contributing significantly to the global

persistence of biodiversity.

One implication of this definition is that it considers bio-

diversity comprehensively, in contrast to the focus of existing

approaches on specific taxa or ecosystems. Thus, a challenge

for the process of consolidating a global standard for the

identification of key biodiversity areas has been to ensure

that the criteria for site identification span scales and com-

ponents of ecological organization. Noss [16] derived a

scientific definition for biodiversity as spanning genetic and

population, species and ecosystem levels of ecological organ-

ization, and comprising compositional, structural and

functional components. The Convention on Biological Diver-

sity [17] formalized this definition by stating that ‘Biological

diversity means the variability among living organisms

from all sources including, inter alia, terrestrial, marine and

other aquatic ecosystems and the ecological complexes of

which they are part: this includes diversity within species,

between species and of ecosystems’.

Here, we develop a general framework and three specific

recommendations on how the process of consolidating a

global standard for the identification of key biodiversity

areas might address components of biodiversity below the

species level, for consideration in the review of the draft

standard. These include genetic diversity within species, phy-

logenetic diversity among species and the evolutionary

processes which drive and maintain both of these [18]. This

paper draws not only from the key biodiversity area framing

workshop mentioned above, but also from subsequent work-

shops addressing key biodiversity area criteria (Front Royal,

March 2013) and thresholds (Rome, December 2013), as

well as from discussion at meetings of ConGRESS (Gregynog,

April 2013) and of the Royal Society (London, March 2014).

2. A framework for addressing biodiversity
below the species level in key biodiversity
area criteria

The many ways in which biodiversity below the species level

could be addressed in the key biodiversity area criteria can be

organized through the framework presented by Sgrò et al.
[19], originally intended for consideration of ‘evolutionary

resilience’ in climate change response strategies. Here, we

generalize this to guide the incorporation of genetic and

phylogenetic biodiversity into the process of informing

decision-making more broadly, and align it to Noss’s [16]

and Gaston’s [20] definitions of biodiversity to structure

our consideration of biodiversity below the species level in

key biodiversity area criteria (table 1).

The relevance of the last two elements of the Sgrò et al.
[19] framework lies beyond the identification of key biodiver-

sity areas per se. To ‘increase connectedness and gene flow

across environmental gradients’ generally requires planning

and action at the levels of entire landscapes or seascapes—

beyond individual sites. This is the case even where

Table 1. Framework for consideration of genetic and phylogenetic diversity relative to the criteria for identification of key biodiversity areas.

aim [19] biodiversity component [16]
key biodiversity
area criterion

increase population size and genetic variation generally genetic and population structure and composition threatened species

maintain adaptive potential in target genes and traits genetic and population structure and function

identify species with little adaptive potential

identify and protect evolutionary refugia genetic and population structure and composition centres of endemism

increase connectedness and gene flow across

environmental gradients

genetic and population structure and function n.a.

increase adaptability to future environments by translocation genetic and population structure, function and composition
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environmental gradients are very sharp (e.g. in many moun-

tain and coastal ecosystems), and certainly where they are

represented by broad ecotones. For example, Smith et al.
[21] found high morphological divergence between those

Cameroonian Andropadus virens populations in tropical

forest and those in forest-savannah, compared with low diver-

gence (for the same level of gene flow) between tropical forest

sites and between forest-savannah sites. There is some counter-

evidence against this: Henry et al. [22] found low dispersal

along an elevational gradient by American pikas Ochotona
princeps in British Colombia. In any case, the location of

given key biodiversity areas along environmental gradients

will be relevant in prioritizing their conservation and connect-

edness, where these are important for the persistence of the

biodiversity feature triggering the site’s identification [23].

Meanwhile, given that key biodiversity areas are sites

contributing significantly to the persistence of biodiversity

features which they currently hold, to ‘increase adaptability

to future environments by translocation’ (along with other

aspects of relocation including species reintroduction and

ecosystem restoration) is not relevant a priori to the identifi-

cation of key biodiversity areas. However, translocation (or

reintroduction or restoration) could trigger the identification

of new key biodiversity areas, if, as, and when such actions

are successful enough to trigger the criteria for a new site

in their own right [24].

We also considered whether there might be any aims for

incorporation of biodiversity below the species level in

informing decision-making more broadly which were not

proposed in Sgrò et al.’s [19] framework, and which we

should therefore add to table 1, but were not able to identify

any such omissions.

We discuss each of the elements in turn, seeking to

develop practical recommendations of how consolidating a

global standard for the identification of key biodiversity

areas might address components of biodiversity below the

species level. In each case, we strive to strike a balance in

how demanding we are of genetic and phylogenetic data

availability. Thus, on the one hand, our proposals should

be robust enough to be applied today in conditions of rela-

tively sparse data availability, while on the other hand,

they should be unlikely to destabilize site identification (e.g.

through identification of orders of magnitude more sites),

if, as, and when data volumes increase into the future.

3. Genetic diversity
The first component of Sgrò et al.’s [19] framework recognizes

the great genetic variation within individual species. Intra-

specific genetic variation is structured across a large range

of variation depending on issues such as the species’ histori-

cal dynamics and demography, and topography. For

example, many species show genetic homogeneity within

certain boundaries and exhibit a marked difference from con-

specifics beyond those boundaries. Other species show

genetic variation that is well correlated with distance, with

genetic differences increasing or decreasing proportionately

with the physical distance separating the populations being

sampled. Regardless of the actual structuring of the intraspe-

cific variation, it is generally agreed that geography plays an

important role [25–27] and that this is important for conser-

vation prioritization and other applications [28]. This is

apparent with the recent proliferation of studies on landscape

genetics [29], assessing the effect of landscape features on

gene flow and genetic diversity by combining genetics, GIS

techniques and spatial statistics [30–32].

Given this, an argument can be constructed for ensuring

that the criterion for presence of threshold populations of a

threatened species triggering key biodiversity area identifi-

cation be extended to also consider ‘threatened genetic

diversity’. Thus, for criteria structured in the form of ‘at

least X% of the global population of a threatened species

occur at a site’, this population metric could be supplemented

by one of ‘X% genetic diversity of a threatened species being

unique to the site’. This would ensure that sites holding a dis-

proportionately high genetic diversity of a threatened species

triggered key biodiversity area identification, even if the

population of the species at the site was relatively small

and insufficient to trigger site identification in its own right.

The use of a subcriterion requiring the presence of a threshold

population of ‘functional reproductive units’ at the site would

ensure that this extension does not trigger identification of

sites holding tiny, unviable populations.

Recommendation no. 1. Thresholds for the threatened

species criterion currently consider a site’s share of a threa-

tened species’ population; expand these to include the

proportion of the species’ genetic diversity unique to a site.

While this recommendation would ensure that key biodi-

versity areas are indeed sites contributing significantly to the

persistence of genetic diversity overall, these sites may be

very different from those where genetic diversity contributes

significantly to the evolution or persistence of the species in

question. Thus, Petit et al. [33], for example, found that

while centres of genetic diversity for 22 species of European

trees are concentrated in central Europe, centres of diversifi-

cation are mainly Mediterranean; Vandergast et al. [34]

found similar differences for 21 vertebrate and invertebrate

species in California. This is because nearly all variation in

genomes, from butterflies [35] to humans [36], is neutral—

only a small fraction is adaptive [37]. Although markers

assessing adaptive variation might sometimes produce simi-

lar patterns as neutral markers [38], we cannot assume that

neutral variation is a surrogate for adaptive markers [39].

Sgrò et al. [19] recognized the importance of assessing adap-

tive genetic variation as the second and third components of

their framework.

The general approach to addressing adaptive variation in

practice has been to incorporate it into the definition of evol-

utionary significant units [40–42]. The rapid acceleration of

technology in the field of genomics is allowing the develop-

ment of new methods for comprehensive evaluation of

adaptive diversity [43], although in the medium-term it is un-

likely that we will see studies incorporate adaptive loci to the

already widespread use of neutral loci for large numbers of

species. While the application of genomic tools is still in its

infancy, these offer a great opportunity for genetic marker dis-

covery and the study of adaptive genetic loci on a wide range of

species [44,45], and metagenomics approaches could facilitate

the identification of key biodiversity areas [46].

In the meantime, a rule of thumb for incorporating adaptive

genetic diversity into the identification of key biodiversity areas

could be simply to broaden the scope of the threatened species

criterion to consider ‘threatened taxa’, as long as these are glob-

ally relevant. The IUCN Red List of Threatened Species [47],

which provides the units for evaluation under this criterion, is
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robust to application not only at the species level but also at

the level of subspecies, plant varieties (e.g. forma, morph and

cultivar), and isolated subpopulations [48]. Given that the

Red List does not assess non-threatened taxa below the species

level, this rule of thumb would not be extended to the other

species-level criteria for the identification of key biodiversity

areas (i.e. restricted-range species, aggregations). Fjeldså’s [49]

analyses of Andean birds suggest that such a modification

may make little difference to which sites are triggered as key

biodiversity areas, but others have anticipated that the recog-

nition of infraspecific taxa would identify additional sites of

significance for birds in Mexico [50] and the Philippines [51].

Recommendation no. 2. Expand criterion for ‘threatened

species’ to consider ‘threatened taxa’.

While such a recommendation would in effect allow this cri-

terion to support the conditions for future diversification, it is

not framed as such given the very slow rate of macro-evolution

relative to anthropogenic land-use impacts. The fastest docu-

mented rates of speciation are for Lupinus in the Andes [52],

Laupala crickets in Hawaii [53], and for fish species in Lake Vic-

toria and Lake Malawi [54]. However, the latter have unfolded

over the last approximately 15 000 years—at least three orders

of magnitude slower than the timescale of human land-use

decision-making.

4. Phylogenetic diversity
The fourth component of Sgrò et al.’s [19] framework recognizes

the importance of evolutionary refugia, where geographical iso-

lation has allowed speciation across multiple taxonomic groups

through drift. The significance of such sites for the global per-

sistence of biodiversity is therefore their contributions to the

maintenance of this unique evolutionary history [55–57].

The last two decades have seen substantial advances in the

compilation of phylogenies from molecular and other types

of data, and their calibration to derive trees that incorporate

time into their branch lengths using molecular clock app-

roaches [58]. These have allowed the development of methods

for measuring the unique contributions of specific places to

phylogenetic diversity [59,60], as well as the calculation of con-

tinuous surfaces of phylogenetic endemism [61]. It remains

unclear whether optimal selection of such sites identifies

places which are different from [62–64] or similar to [65–67]

those identified based on species endemism. However, even if

only a few sites important as evolutionary refugia do not

emerge as centres of species endemism, it is valuable to incor-

porate a mechanism by which the criteria for identification of

key biodiversity areas can address these [68].

The general form for key biodiversity area criteria for

centres of endemism can be expressed as requiring that a

site holds ‘at least X% of the species within a taxonomic

group whose restricted ranges collectively define a centre of

endemism’. This criterion encompasses three operational

components: (i) the definition of the taxonomic group for

consideration (typically class for vertebrates, order for other

taxa, based on practical applicability); (ii) the definition of a

maximum range size for species whose overlapping ranges

can define a ‘centre of endemism’—Stattersfield et al. [69]

used 50 000 km2, corresponding to the 25th percentile of the

range-size distribution in the class Aves, and a minimum of

two species to define an Endemic Bird Area; and (iii) the defi-

nition of the proportion of these restricted-range species

necessary to confirm the site’s identification as a key biodi-

versity area.

The second and third of these components could be

extended to consider evolutionary refugia based on a site’s

complement of the phylogenetic diversity restricted to the

centre of endemism [60]. Such an approach would extend

the criterion requiring that a site holds ‘at least X% of the

complement of species within a taxonomic group whose

restricted ranges collectively define a centre of endemism’

to require, more generally, that a key biodiversity area hold

‘at least X% of the compositional or phylogenetic diversity

of species within a taxonomic group whose restricted

ranges collectively define a centre of endemism’.

Recommendation no. 3. Expand the centre of endemism cri-

terion to identify as key biodiversity areas those sites holding

a threshold proportion of the compositional or phylogenetic

diversity of species (within a taxonomic group) whose restricted

ranges collectively define a centre of endemism.

5. Applications to species-specific conservation
While the definition of key biodiversity areas recommended by

the framing workshop establishes them as important sites for

biodiversity, this does not imply any particular kind of conser-

vation management action upon them (although many may

require them, and many may already be under some manage-

ment regime). This said, knowledge of where key biodiversity

areas are and what biodiversity features trigger them is used by

many different sectors of society for many different kinds of

applications. These include conservation actions; the science

of optimal allocation of resources for such conservation actions

is known as systematic conservation planning [70,71]. Most fre-

quently, these actions relate to site safeguard and management,

for which the planning process is known as spatial conserva-

tion prioritization [71]. However, key biodiversity area

information is also useful in application to other aspects of con-

servation action, including single-species management.

Bearing this in mind, one aspect of evolutionary history

notable by its absence from the four recommendations

above is the incorporation of the phylogenetic diversity

unique to a species (its ‘unique PD contribution’; [60]) into

the criteria for key biodiversity area identification. A number

of such measures exist, based for example on the time since

divergence from a species’ closest relative, and are used in com-

bination with information on the species’ extinction risk to set

priorities for species conservation [72–77]. The Zoological

Society of London uses this approach, for example, to guide

their Evolutionarily Distinct and Globally Endangered

(EDGE) programme [68,78].

Safi et al. [79] combined the EDGE approach with coarse

resolution species range maps to guide prioritization of con-

servation actions among broad regions. Faith [68] proposes a

modified approach which calculates the loss in threatened

branches or phylogenetic diversity if the area were lost, addres-

sing the challenge that multiple EDGE species in an area can

represent a large or a small amount of threatened phylogenetic

diversity, depending on whether the species are phylogeneti-

cally clumped or dispersed. Given that all EDGE species are

by definition globally threatened, all in turn will have those

sites contributing significantly to their persistence identified

as key biodiversity areas (under the criterion for ‘threatened

taxa’, see above). One interesting application of key biodiversity
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area information could therefore be to refine the approaches

proposed by Safi et al. [79] and combine them with site-specific

measures such as threats to the species and costs of ameliorating

these threats to prioritize specific sites for actions to conserve

EDGE species specifically [78] and threatened phylogenetic

diversity generally [68].

Recommendation no. 4. Consider occurrence of species

making the greatest contributions to maintaining phylo-

genetic diversity (i.e. EDGE species) in key biodiversity areas

to inform prioritization of species-specific conservation actions

among sites.

6. Conclusion
The initial discussions of the IUCN Species Survival Commis-

sion and World Commission on Protected Areas process

considered establishment of a new subcriterion for triggering

key biodiversity area identification for sites contributing signifi-

cantly to the global persistence of biodiversity through their

importance in maintaining outstanding evolutionary process,

possibly to sit alongside the criteria for outstanding ecological

process (e.g. species congregations and aggregations). How-

ever, in subsequent deliberations, it proved impossible to

establish a mechanism by which such a criterion could be put

into operation. One possible final recommendation would

therefore be to establish a non-operational criterion for sites

of global significance for evolutionary process and leave the

operationalization of this as a priority for future research.

On reflection, the development of such a criterion appears

to be unnecessary in any case. Our three recommendations for

incorporation of components of biodiversity below the species

level into existing key biodiversity area criteria appear to span

aspects of composition, structure and function of genetic diver-

sity, and also the breadth of mechanisms for putting this into

practice proposed by Sgrò et al. [19]. Much work remains for

developing specific guidance for how these recommendations

should be applied in practice, and overcome data limitations to

allow them to be implemented for more than a handful of well-

studied species. These will doubtless evolve over coming years

as the power and accessibility of genetic and genomic tech-

niques continues to improve. Nevertheless, we believe that

implementation of the recommendations proposed here for

key biodiversity area identification would allow confidence

in the claim that such sites do indeed contribute significantly

to the global persistence not just of species and ecosystem

components of biodiversity but of genetic components as well.
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