94 research outputs found

    Thymocyte regulatory variant alters transcription factor binding and protects from type 1 diabetes in infants

    Get PDF
    We recently mapped a genetic susceptibility locus on chromosome 6q22.33 for type 1 diabetes (T1D) diagnosed below the age of 7 years between the PTPRK and thymocyte-selection-associated (THEMIS) genes. As the thymus plays a central role in shaping the T cell repertoire, we aimed to identify the most likely causal genetic factors behind this association using thymocyte genomic data. In four thymocyte populations, we identified 253 DNA sequence motifs underlying histone modifications. The G insertion allele of rs138300818, associated with protection from diabetes, created thymocyte motifs for multiple histone modifications and thymocyte types. In a parallel approach to identifying variants that alter transcription factor binding motifs, the same variant disrupted a predicted motif for Rfx7, which is abundantly expressed in the thymus. Chromatin state and RNA sequencing data suggested strong transcription overlapping rs138300818 in fetal thymus, while expression quantitative trait locus and chromatin conformation data associate the insertion with lower THEMIS expression. Extending the analysis to other T1D loci further highlighted rs66733041 affecting the GATA3 transcription factor binding in the AFF3 locus. Taken together, our results support a role for thymic THEMIS gene expression and the rs138300818 variant in promoting the development of early-onset T1D.Peer reviewe

    Correction: Delayed Goblet Cell Hyperplasia, Acetylcholine Receptor Expression, and Worm Expulsion in SMC-Specific IL-4Rα–Deficient Mice

    Get PDF
    Interleukin 4 receptor alpha (IL-4Ralpha) is essential for effective clearance of gastrointestinal nematode infections. Smooth muscle cells are considered to play a role in the type 2 immune response-driven expulsion of gastrointestinal nematodes. Previous studies have shown in vitro that signal transducer and activator of transcription 6 signaling in response to parasitic nematode infection significantly increases smooth muscle cell contractility. Inhibition of the IL-4Ralpha pathway inhibits this response. How this response manifests itself in vivo is unknown. In this study, smooth muscle cell IL-4Ralpha-deficient mice (SM-MHC(Cre)IL-4Ralpha(-/lox)) were generated and characterized to uncover any role for IL-4/IL-13 in this non-immune cell type in response to Nippostrongylus brasiliensis infection. IL-4Ralpha was absent from alpha-actin-positive smooth muscle cells, while other cell types showed normal IL-4Ralpha expression, thus demonstrating efficient cell-type-specific deletion of the IL-4Ralpha gene. N. brasiliensis-infected SM-MHC(Cre)IL-4Ralpha(-/lox) mice showed delayed ability to resolve infection with significantly prolonged fecal egg recovery and delayed worm expulsion. The delayed expulsion was related to a delayed intestinal goblet cell hyperplasia, reduced T helper 2 cytokine production in the mesenteric lymph node, and reduced M3 muscarinic receptor expression during infection. Together, these results demonstrate that in vivo IL-4Ralpha-responsive smooth muscle cells are beneficial for N. brasiliensis expulsion by coordinating T helper 2 cytokine responses, goblet hyperplasia, and acetylcholine responsiveness, which drive smooth muscle cell contractions

    Deletion of IL-4Rα on CD4 T Cells Renders BALB/c Mice Resistant to Leishmania major Infection

    Get PDF
    Effector responses induced by polarized CD4(+) T helper 2 (Th2) cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor α chain (IL-4Rα). IL-4Rα–deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4(+) T cells and IL-4/IL-13 responsiveness of non-CD4(+) T cells in inducing nonhealer or healer responses have yet to be elucidated. CD4(+) T cell–specific IL-4Rα (Lck(cre)IL-4Rα(−/lox)) deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Rα signaling during cutaneous leishmaniasis in the absence of IL-4–responsive CD4(+) T cells. Efficient deletion was confirmed by loss of IL-4Rα expression on CD4(+) T cells and impaired IL-4–induced CD4(+) T cell proliferation and Th2 differentiation. CD8(+), γδ(+), and NK–T cells expressed residual IL-4Rα, and representative non–T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Rα(−/lox) BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(cre)IL-4Rα(−/lox) mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(cre)IL-4Rα(−/lox) mice correlated with reduced numbers of IL-10–secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-γ production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4(+) T cells is required to transform nonhealer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Rα signaling in L. major infection is revealed in which IL-4/IL-13–responsive non-CD4(+) T cells induce protective responses

    Bayesian detection of unmodeled bursts of gravitational waves

    Full text link
    The data analysis problem of coherently searching for unmodeled gravitational-wave bursts in the data generated by a global network of gravitational-wave observatories has been at the center of research for almost two decades. As data from these detectors is starting to be analyzed, a renewed interest in this problem has been sparked. A Bayesian approach to the problem of coherently searching for gravitational wave bursts with a network of ground-based interferometers is here presented. We demonstrate how to systematically incorporate prior information on the burst signal and its source into the analysis. This information may range from the very minimal, such as best-guess durations, bandwidths, or polarization content, to complete prior knowledge of the signal waveforms and the distribution of sources through spacetime. We show that this comprehensive Bayesian formulation contains several previously proposed detection statistics as special limiting cases, and demonstrate that it outperforms them.Comment: 18 pages, 3 figures, revisions based on referee comment

    Natural Variation in Interleukin-2 Sensitivity Influences Regulatory T-Cell Frequency and Function in Individuals With Long-standing Type 1 Diabetes.

    Get PDF
    Defective immune homeostasis in the balance between FOXP3+ regulatory T cells (Tregs) and effector T cells is a likely contributing factor in the loss of self-tolerance observed in type 1 diabetes (T1D). Given the importance of interleukin-2 (IL-2) signaling in the generation and function of Tregs, observations that polymorphisms in genes in the IL-2 pathway associate with T1D and that some individuals with T1D exhibit reduced IL-2 signaling indicate that impairment of this pathway may play a role in Treg dysfunction and the pathogenesis of T1D. Here, we have examined IL-2 sensitivity in CD4+ T-cell subsets in 70 individuals with long-standing T1D, allowing us to investigate the effect of low IL-2 sensitivity on Treg frequency and function. IL-2 responsiveness, measured by STAT5a phosphorylation, was a very stable phenotype within individuals but exhibited considerable interindividual variation and was influenced by T1D-associated PTPN2 gene polymorphisms. Tregs from individuals with lower IL-2 signaling were reduced in frequency, were less able to maintain expression of FOXP3 under limiting concentrations of IL-2, and displayed reduced suppressor function. These results suggest that reduced IL-2 signaling may be used to identify patients with the highest Treg dysfunction and who may benefit most from IL-2 immunotherapy.This work was supported by the JDRF UK Centre for Diabetes Genes, Autoimmunity and Prevention (D-GAP; 4-2007-1003), the Wellcome Trust (WT061858/091157) and the NIHR Cambridge Biomedical Research Centre (CBRC). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140).This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db15-051

    IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients.

    Get PDF
    AIMS/HYPOTHESIS: Type 1 diabetes results from the autoimmune destruction of insulin-secreting pancreatic beta cells by T cells. Despite the established role of T cells in the pathogenesis of the disease, to date, with the exception of the identification of islet-specific T effector (Teff) cells, studies have mostly failed to identify reproducible alterations in the frequency or function of T cell subsets in peripheral blood from patients with type 1 diabetes. METHODS: We assessed the production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 in peripheral blood mononuclear cells from 69 patients with type 1 diabetes and 61 healthy donors. In an additional cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. IL-21 and IL-17 production was also measured in peripheral blood mononuclear cells (PBMCs) from a subset of 46 of the 62 donors immunophenotyped for Tfh. RESULTS: We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). Consistent with this finding, we found a 14.9% increase in circulating Tfh cells in the patients (95% CI 2.9, 26.9; p = 0.016). CONCLUSIONS/INTERPRETATION: These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.This work was supported by the JDRF UK Centre for Diabetes - Genes, Autoimmunity and Prevention (D-GAP; 4-2007-1003) in collaboration with M. Peakman and T. Tree at King’s College London, the JDRF, the Wellcome Trust (WT; WT061858/091157 and 083650/Z/07/Z) and the National Institute for Health Research Cambridge Biomedical Research Centre (CBRC). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). RCF is funded by a JDRF post-doctoral fellowship (3-2011-374). CW is funded by the Wellcome Trust (088998). The funding organisations had no involvement with the design and conduct of the study; collection,management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.This is the final published version. It first appeared at http://link.springer.com/article/10.1007%2Fs00125-015-3509-8

    Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping.

    Get PDF
    Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.We acknowledge use of DNA from The UK Blood Services collection of Common Controls (UKBS-CC collection), which is funded by the Wellcome Trust grant 076113/C/04/Z and by the USA National Institute for Health Research program grant to the National Health Service Blood and Transplant (RP-PG-0310-1002). We acknowledge the use of DNA from the British 1958 Birth Cohort collection, which is funded by the UK Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. This research utilized resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institute of Allergy and Infectious Diseases, the National Human Genome Research Institute, the National Institute of Child Health and Human Development and the JDRF and is supported by the USA National Institutes of Health grant U01-DK062418. The JDRF/Wellcome Trust Diabetes and Inflammation Laboratory is funded by the JDRF (9-2011-253), the Wellcome Trust (091157) and the National Institute for Health Research Cambridge Biomedical Centre. The research leading to these results has received funding from the European Union's 7th Framework Programme (FP7/2007-2013) under grant agreement no.241447 (NAIMIT). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). CW is supported by the Wellcome Trust (089989). We acknowledge the National Institute for Health Research Cambridge Biomedical Research Centre for funding.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pgen.100527

    Delayed Goblet Cell Hyperplasia, Acetylcholine Receptor Expression, and Worm Expulsion in SMC-Specific IL-4Rα–Deficient Mice

    Get PDF
    Interleukin 4 receptor α (IL-4Rα) is essential for effective clearance of gastrointestinal nematode infections. Smooth muscle cells are considered to play a role in the type 2 immune response–driven expulsion of gastrointestinal nematodes. Previous studies have shown in vitro that signal transducer and activator of transcription 6 signaling in response to parasitic nematode infection significantly increases smooth muscle cell contractility. Inhibition of the IL-4Rα pathway inhibits this response. How this response manifests itself in vivo is unknown. In this study, smooth muscle cell IL-4Rα–deficient mice (SM-MHC(Cre)IL-4Rα(−/lox)) were generated and characterized to uncover any role for IL-4/IL-13 in this non–immune cell type in response to Nippostrongylus brasiliensis infection. IL-4Rα was absent from α-actin–positive smooth muscle cells, while other cell types showed normal IL-4Rα expression, thus demonstrating efficient cell-type–specific deletion of the IL-4Rα gene. N. brasiliensis–infected SM-MHC(Cre)IL-4Rα(−/lox) mice showed delayed ability to resolve infection with significantly prolonged fecal egg recovery and delayed worm expulsion. The delayed expulsion was related to a delayed intestinal goblet cell hyperplasia, reduced T helper 2 cytokine production in the mesenteric lymph node, and reduced M3 muscarinic receptor expression during infection. Together, these results demonstrate that in vivo IL-4Rα–responsive smooth muscle cells are beneficial for N. brasiliensis expulsion by coordinating T helper 2 cytokine responses, goblet hyperplasia, and acetylcholine responsiveness, which drive smooth muscle cell contractions

    Analysis of a wild mouse promoter variant reveals a novel role for FcγRIIb in the control of the germinal center and autoimmunity.

    Get PDF
    Genetic variants of the inhibitory Fc receptor FcγRIIb have been associated with systemic lupus erythematosus in humans and mice. The mechanism by which Fcgr2b variants contribute to the development of autoimmunity is unknown and was investigated by knocking in the most commonly conserved wild mouse Fcgr2b promoter haplotype, also associated with autoimmune-prone mouse strains, into the C57BL/6 background. We found that in the absence of an AP-1-binding site in its promoter, FcγRIIb failed to be up-regulated on activated and germinal center (GC) B cells. This resulted in enhanced GC responses, increased affinity maturation, and autoantibody production. Accordingly, in the absence of FcγRIIb activation-induced up-regulation, mice developed more severe collagen-induced arthritis and spontaneous glomerular immune complex deposition. Our data highlight how natural variation in Fcgr2b drives the development of autoimmune disease. They also show how the study of such variants using a knockin approach can provide insight into immune mechanisms not possible using conventional genetic manipulation, in this case demonstrating an unexpected critical role for the activation-induced up-regulation of FcγRIIb in controlling affinity maturation, autoantibody production, and autoimmunity

    X-Pipeline: An analysis package for autonomous gravitational-wave burst searches

    Get PDF
    Autonomous gravitational-wave searches -- fully automated analyses of data that run without human intervention or assistance -- are desirable for a number of reasons. They are necessary for the rapid identification of gravitational-wave burst candidates, which in turn will allow for follow-up observations by other observatories and the maximum exploitation of their scientific potential. A fully automated analysis would also circumvent the traditional "by hand" setup and tuning of burst searches that is both labourious and time consuming. We demonstrate a fully automated search with X-Pipeline, a software package for the coherent analysis of data from networks of interferometers for detecting bursts associated with GRBs and other astrophysical triggers. We discuss the methods X-Pipeline uses for automated running, including background estimation, efficiency studies, unbiased optimal tuning of search thresholds, and prediction of upper limits. These are all done automatically via Monte Carlo with multiple independent data samples, and without requiring human intervention. As a demonstration of the power of this approach, we apply X-Pipeline to LIGO data to search for gravitational-wave emission associated with GRB 031108. We find that X-Pipeline is sensitive to signals approximately a factor of 2 weaker in amplitude than those detectable by the cross-correlation technique used in LIGO searches to date. We conclude with the prospects for running X-Pipeline as a fully autonomous, near real-time triggered burst search in the next LSC-Virgo Science Run.Comment: 18 pages, 10 figures. Minor edits and clarifications; added more background on gravitational waves and detectors. To appear in New Journal of Physics
    corecore