139 research outputs found

    Swedish snus and the GothiaTek® standard

    Get PDF
    Some smokeless tobacco products, such as Swedish snus, are today considered to be associated with substantially fewer health hazards than cigarettes. This risk differential has contributed to the scientific debate about the possibilities of harm reduction within the tobacco area. Although current manufacturing methods for snus build on those that were introduced more than a century ago, the low levels of unwanted substances in modern Swedish snus are largely due to improvements in production techniques and selection of raw materials in combination with several programs for quality assurance and quality control. These measures have been successively introduced during the past 30-40 years. In the late 1990s they formed the basis for a voluntary quality standard for Swedish snus named GothiaTek®. In recent years the standard has been accepted by the members of the trade organization European Smokeless Tobacco Council (ESTOC) so it has now evolved into an industrial standard for all smokeless tobacco products in Europe

    A comparison of nicotine dose estimates in smokers between filter analysis, salivary cotinine, and urinary excretion of nicotine metabolites

    Get PDF
    RATIONALE: Nicotine uptake during smoking was estimated by either analyzing the metabolites of nicotine in various body fluids or by analyzing filters from smoked cigarettes. However, no comparison of the filter analysis method with body fluid analysis methods has been published. OBJECTIVES: Correlate nicotine uptake estimates between filter analysis, salivary cotinine, and urinary excretion of selected nicotine metabolites to determine the suitability of these methods in estimating nicotine absorption in smokers of filtered cigarettes. MATERIALS AND METHODS: A 5-day clinical study was conducted with 74 smokers who smoked 1–19 mg Federal Trade Commission tar cigarettes, using their own brands ad libitum. Filters were analyzed to estimate the daily mouth exposure of nicotine. Twenty-four-hour urine samples were collected and analyzed for nicotine, cotinine, and 3′-hydroxycotinine plus their glucuronide conjugates. Saliva samples were collected daily for cotinine analysis. RESULTS: Each method correlated significantly (p < 0.01) with the other two. The best correlation was between the mouth exposure of nicotine, as estimated by filter analysis, and urinary nicotine plus metabolites. Multiple regression analysis implies that saliva cotinine and urinary output are dependent on nicotine mouth exposure for multiple days. Creatinine normalization of the urinary metabolites degrades the correlation with mouth exposure. CONCLUSIONS: The filter analysis method was shown to correlate with more traditional methods of estimating nicotine uptake. However, because filter analysis is less complicated and intrusive, subjects can collect samples easily and unsupervised. This should enable improvements in study compliance and future study designs

    EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 77, Revision 1 (FGE.77Rev1): Consideration of Pyridine, Pyrrole and Quinoline Derivatives evaluated by JECFA (63rd meeting)

    Get PDF
    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to consider evaluations of flavouring substances assessed since 2000 by the Joint FAO/WHO Expert Committee on Food Additives (the JECFA), and to decide whether further evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 22 pyridine, pyrrole and quinoline derivatives evaluated by the JECFA (63rd meeting). The revision of this consideration is made since additional toxicity data have become available for isoquinoline [FL-no: 14.001], pyrrole [FL-no: 14.041] and 2-acetylpyrrole [FL-no: 14.047]. The toxicity data on 2-acetylpyrrole should also cover 2-propionylpyrrole [FL-no: 14.068]. Further, additional genotoxicity data on 6-methylquinoline [FL-no: 14.042] have become available. The Panel concluded that for 6-methylquinoline [FL-no: 14.042], the new genotoxicity data did not clear the concern with respect to genotoxicity in vitro and accordingly the substance is not evaluated through the Procedure. For 18 substances [FL-no: 14.001, 14.004, 14.007, 14.030, 14.038, 14.039, 14.041, 14.047, 14.058, 14.059, 14.060, 14.061, 14.065, 14.066, 14.068, 14.071, 14.072 and 14.164] considered in this FGE, the Panel agrees with the JECFA conclusion, “No safety concern at estimated levels of intake as flavouring substances” based on the MSDI approach. For three substances [FL-no: 13.134, 14.045 and 14.046], additional toxicological data are still required. Besides the safety assessment of these flavouring substances, the specifications for the materials of commerce have also been evaluated, and the information is considered adequate for all the substances

    The in vitro toxicology of Swedish snus

    Get PDF
    Three commercial brands of Swedish snus (SWS), an experimental SWS, and the 2S3 reference moist snuff were each tested in four in vitro toxicology assays. These assays were: Salmonella reverse mutation, mouse lymphoma, in vitro micronucleus, and cytotoxicity. Water extractions of each of the 5 products were tested using several different concentrations; the experimental SWS was also extracted using dimethyl sulfoxide (DMSO). Extraction procedures were verified by nicotine determinations. Results for SWS in the mutagenicity assays were broadly negative: there were occasional positive responses, but these were effectively at the highest concentration only (concentrations well above those suggested by regulatory guidelines), and were often associated with cytotoxicity. The 2S3 reference was unequivocally positive in one of the three conditions of the micronucleus assay (MNA), at the highest concentration only. Positive controls produced the expected responses in each assay. The SWS data are contrasted with data reported for combusted tobacco in the form of cigarettes, where strongly positive responses have been routinely reported for mutagenicity and cytotoxicity. These negative findings in a laboratory setting concur with the large amount of epidemiological data from Sweden, data showing that SWS are associated with considerably lower carcinogenic potential when compared with cigarettes

    Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    Get PDF
    Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.Foundation of Support to Research of Sao Paulo State (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [07/59127-9

    Recent Contributions of Air- and Biomarkers to the Control of Secondhand Smoke (SHS): A Review

    Get PDF
    Since the publication of the US Surgeon General Reports in 1996 and 2006 and the report of the California Environmental Protection Agency in 1999, many reports have appeared on the contribution of air and biomarkers to different facets of the secondhand smoke (SHS) issue, which are the targets of this review. These recent studies have allowed earlier epidemiological surveys to be biologically validated, and their plausibility demonstrated, quantified the levels of exposure to SHS before the bans in various environments, showed the deficiencies of mechanical control methods and of partial bans and the frequently correct implementation of the efficient total bans. More stringent regulation remains necessary in the public domain (workplaces, hospitality venues, transport sector, etc.) in many countries. Personal voluntary protection efforts against SHS are also needed in the private domain (homes, private cars). The effects of SHS on the cardiovascular, respiratory and neuropsychic systems, on pregnancy and fertility, on cancers and on SHS genotoxicity are confirmed through experimental human studies and through the relationship between markers and prevalence of disease or of markers of disease risk

    Ist Pudding mit Vanille-Geschmack mutagen?

    No full text
    corecore