6 research outputs found

    Multiple paternity in the freshwater snail, Potamopyrgus antipodarum. Ecology and Evolution

    No full text
    Abstract Mating multiply may incur costs, such as exposure to predators and to sexually transmitted diseases. Nevertheless, it may be favored, in spite of these costs, as a way to increase the genetic diversity of offspring through fertilization by multiple males. Here, we tested for multiple paternity in a freshwater snail (Potamopyrgus antipodarum), which is host to several species of sterilizing trematode worms. Using microsatellites markers, we found multiple paternity in two different snail populations, with as many as seven males fertilizing a single female. In addition, high evenness of sire fertilization was found within individual broods. Multiple paternity can occur for a variety of reasons; however, given that these populations experience high risk of infection by a sterilizing trematode, one potential explanation may be that multiple paternity and high evenness of sire fertilizations increase the chances of the production of parasite-resistant offspring

    Data from: Exposure to parasites increases promiscuity in a freshwater snail

    No full text
    Under the Red Queen hypothesis, outcrossing can produce genetically variable progeny, which may be more resistant, on average, to locally adapted parasites. Mating with multiple partners may enhance this resistance by further increasing the genetic variation among offspring. We exposed Potamopyrgus antipodarum to the eggs of a sterilising, trematode parasite and tested whether this altered mating behaviour. We found that exposure to parasites increased the number of snail mating pairs and the total number of different mating partners for both males and females. Thus our results suggest that, in host populations under parasite-mediated selection, exposure to infective propagules increases the rate of mating and the number of mates

    Data from: Faster clonal turnover in high-infection habitats provides evidence for parasite-mediated selection

    No full text
    According to the Red Queen hypothesis for sex, parasite-mediated selection against common clones counterbalances the reproductive advantage of asexual lineages, which would otherwise outcompete sexual conspecifics. Such selection on the clonal population is expected to lead to a faster clonal turnover in habitats where selection by parasites is stronger. We tested this prediction by comparing the genetic structure of clonal and sexual populations of freshwater snail Potamopyrgus antipodarum between years 2003 and 2007 in three depth-specific habitats in Lake Alexandrina (South Island, New Zealand). These habitats differ in the risk of infection by castrating trematodes and in the relative proportion of sexual individuals. As predicted, we found that the clonal structure changed significantly in shallow and mid-water habitats, where prevalence of infection was high, but not in the deep habitat, where parasite prevalence was low. Additionally, we found that both clonal diversity and evenness of the asexual population declined in the shallow habitat. In contrast, the genetic structure (based on F–statistics) of the coexisting sexual population did not change, which suggests that the change in the clonal structure cannot be related to genetic changes in the sexual population. Finally, the frequency of sexuals had no effect on the diversity of the sympatric clonal population. Taken together, our results show a more rapid clonal turnover in high-infection habitats, which gives support for the Red Queen hypothesis for sex
    corecore