10 research outputs found

    Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/mTOR axis in metastatic pheochromocytoma/paraganglioma

    Full text link
    Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through models, and define specific therapeutic options according to tumor genomic features. : We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized . : A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients' liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, =4.67·10), and was found associated with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated a repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. : Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients' management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors

    Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/ mTOR axis in metastatic pheochromocytoma/ paraganglioma

    Get PDF
    Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients’ liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients’ management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors

    Recurrent Germline DLST Mutations in Individuals with Multiple Pheochromocytomas and Paragangliomas.

    No full text
    Pheochromocytomas and paragangliomas (PPGLs) provide some of the clearest genetic evidence for the critical role of metabolism in the tumorigenesis process. Approximately 40% of PPGLs are caused by driver germline mutations in 16 known susceptibility genes, and approximately half of these genes encode members of the tricarboxylic acid (TCA) cycle. Taking as a starting point the involvement of the TCA cycle in PPGL development, we aimed to identify unreported mutations that occurred in genes involved in this key metabolic pathway and that could explain the phenotypes of additional individuals who lack mutations in known susceptibility genes. To accomplish this, we applied a targeted sequencing of 37 TCA-cycle-related genes to DNA from 104 PPGL-affected individuals with no mutations in the major known predisposing genes. We also performed omics-based analyses, TCA-related metabolite determination, and 13C5-glutamate labeling assays. We identified five germline variants affecting DLST in eight unrelated individuals (∼7%); all except one were diagnosed with multiple PPGLs. A recurrent variant, c.1121G>A (p.Gly374Glu), found in four of the eight individuals triggered accumulation of 2-hydroxyglutarate, both in tumors and in a heterologous cell-based assay designed to functionally evaluate DLST variants. p.Gly374Glu-DLST tumors exhibited loss of heterozygosity, and their methylation and expression profiles are similar to those of EPAS1-mutated PPGLs; this similarity suggests a link between DLST disruption and pseudohypoxia. Moreover, we found positive DLST immunostaining exclusively in tumors carrying TCA-cycle or EPAS1 mutations. In summary, this study reveals DLST as a PPGL-susceptibility gene and further strengthens the relevance of the TCA cycle in PPGL development

    Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma

    No full text
    One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients

    SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas : A multicenter interobserver variation analysis using virtual microscopy: A Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T)

    No full text
    Despite the established role of SDHB/SDHA immunohistochemistry as a valuable tool to identify patients at risk for familial succinate dehydrogenase-related pheochromocytoma/paraganglioma syndromes, the reproducibility of the assessment methods has not as yet been determined. The aim of this study was to investigate interobserver variability among seven expert endocrine pathologists using a web-based virtual microscopy approach in a large multicenter pheochromocytoma/paraganglioma cohort (n=351): (1) 73 SDH mutated, (2) 105 non-SDH mutated, (3) 128 samples without identified SDH-x mutations, and (4) 45 with incomplete SDH molecular genetic analysis. Substantial agreement among all the reviewers was observed either with a two-tiered classification (SDHB κ=0.7338; SDHA κ=0.6707) or a three-tiered classification approach (SDHB κ=0.6543; SDHA κ=0.7516). Consensus was achieved in 315 cases (89.74%) for SDHB immunohistochemistry and in 348 cases (99.15%) for SDHA immunohistochemistry. Among the concordant cases, 62 of 69 (∼90%) SDHB-/C-/D-/AF2-mutated cases displayed SDHB immunonegativity and SDHA immunopositivity, 3 of 4 (75%) with SDHA mutations showed loss of SDHA/SDHB protein expression, whereas 98 of 105 (93%) non-SDH-x-mutated counterparts demonstrated retention of SDHA/SDHB protein expression. Two SDHD-mutated extra-adrenal paragangliomas were scored as SDHB immunopositive, whereas 9 of 128 (7%) tumors without identified SDH-x mutations, 6 of 37 (∼16%) VHL-mutated, as well as 1 of 21 (∼5%) NF1-mutated tumors were evaluated as SDHB immunonegative. Although 14 out of those 16 SDHB-immunonegative cases were nonmetastatic, an overall significant correlation between SDHB immunonegativity and malignancy was observed (P=0.00019). We conclude that SDHB/SDHA immunohistochemistry is a reliable tool to identify patients with SDH-x mutations with an additional value in the assessment of genetic variants of unknown significance. If SDH molecular genetic analysis fails to detect a mutation in SDHB-immunonegative tumor, SDHC promoter methylation and/or VHL/NF1 testing with the use of targeted next-generation sequencing is advisable

    PheoSeq : A Targeted Next-Generation Sequencing Assay for Pheochromocytoma and Paraganglioma Diagnostics

    No full text
    Genetic diagnosis is recommended for all pheochromocytoma and paraganglioma (PPGL) cases, as driver mutations are identified in approximately 80% of the cases. As the list of related genes expands, genetic diagnosis becomes more time-consuming, and targeted next-generation sequencing (NGS) has emerged as a cost-effective tool. This study aimed to optimize targeted NGS in PPGL genetic diagnostics. A workflow based on two customized targeted NGS assays was validated to study the 18 main PPGL genes in germline and frozen tumor DNA, with one of them specifically directed toward formalin-fixed paraffin-embedded tissue. The series involved 453 unrelated PPGL patients, of whom 30 had known mutations and were used as controls. Partial screening using Sanger had been performed in 275 patients. NGS results were complemented with the study of gross deletions. NGS assay showed a sensitivity ≥99.4%, regardless of DNA source. We identified 45 variants of unknown significance and 89 pathogenic mutations, the latter being germline in 29 (7.2%) and somatic in 58 (31.7%) of the 183 tumors studied. In 37 patients previously studied by Sanger sequencing, the causal mutation could be identified. We demonstrated that both assays are an efficient and accurate alternative to conventional sequencing. Their application facilitates the study of minor PPGL genes, and enables genetic diagnoses in patients with incongruent or missing clinical data, who would otherwise be missed

    PheoSeq

    No full text
    corecore