950 research outputs found

    Defining Acute Lung Disease in Children With the Oxygenation Saturation Index

    Get PDF
    Objective: To evaluate whether a formula could be derived using oxygen saturation (Spo2) to replace Pao2 that would allow identification of children with acute lung injury and acute respiratory distress syndrome. Definitions of acute lung injury and acute respiratory distress syndrome require arterial blood gases to determine the Pao2/Fio2 ratio of 300 (acute lung injury) and 200 (acute respiratory distress syndrome). Design: Post hoc data analysis of measurements abstracted from two prospective databases of randomized controlled trials. Setting: Academic pediatric intensive care units. Patients: A total of 255 children enrolled in two large prospective trials of therapeutic intervention for acute lung disease: calfactant and prone positioning. Interventions: Data were abstracted including Pao2, Paco2, pH, Fio2, and mean airway pressure. Repeated-measures analyses, using linear mixed-effects models, were used to build separate prediction equations for the Spo2/Fio2 ratio, oxygenation index [(Fio2 × Mean Airway Pressure)/Pao2], and oxygen saturation index [(Fio2 × Mean Airway Pressure)/Spo2]. A generalization of R2 was used to measure goodness-of-fit. Generalized estimating equations with a logit link were used to calculate the sensitivity and specificity for the cutoffs of Pao2/Fio2 ratio of 200 and 300 and equivalent values of Spo2/Fio2 ratio, oxygenation index, and oxygen saturation index. Measurements and Main Results: An Spo2/Fio2 ratio of 253 and 212 would equal criteria for acute lung injury and acute respiratory distress syndrome, respectively. An oxygenation index of 5.3 would equal acute lung injury criteria, and an oxygenation index of 8.1 would qualify for acute respiratory distress syndrome. An oxygen saturation index, which includes the mean airway pressure and the noninvasive measure of oxygenation, of 6.5 would be equivalent to the acute lung injury criteria, and an oxygen saturation index of 7.8 would equal acute respiratory distress syndrome criteria. Conclusions: Noninvasive methods of assessing oxygenation may be utilized with reasonable sensitivity and specificity to define acute lung injury and acute respiratory distress syndrome, and, with prospective validation, have the potential to increase the number of children enrolled into clinical trials

    Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles

    Get PDF
    The following article appeared in Journal of Applied Physics 109.12 (2011): 124306 and may be found at http://scitation.aip.org/content/aip/journal/jap/109/12/10.1063/1.3600222We report on the absorption of electromagnetic radiation by metallic nanoparticles in the radio and far infrared frequency range, and subsequent heating of nanoparticle solutions. A recent series of papers has measured considerable radio frequency (RF) heating of gold nanoparticle solutions. In this work, we show that claims of RF heating by metallic nanoparticles are not supported by theory. We analyze several mechanisms by which nonmagnetic metallic nanoparticles can absorb low frequency radiation, including both classical and quantum effects. We conclude that none of these absorption mechanisms, nor any combination of them, can increase temperatures at the rates recently reported. A recent experiment supports this finding.Support by the Spanish Ministerio de Ciencia e Innovación Grant No. FIS2008-04209 and the Swedish Foundation for Strategic Research (metamaterial Grant No. SSF RMA08-0109) is acknowledged

    Dysregulated plasma lipid mediator profiles in critically ill COVID-19 patients.

    Get PDF
    Coronavirus disease (COVID)-19, as a result of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has been the direct cause of over 2.2 million deaths worldwide. A timely coordinated host-immune response represents the leading driver for restraining SARS-CoV-2 infection. Indeed, several studies have described dysregulated immunity as the crucial determinant for critical illness and the failure of viral control. Improved understanding and management of COVID-19 could greatly reduce the mortality and morbidity caused by SARS-CoV-2. One aspect of the immune response that has to date been understudied is whether lipid mediator production is dysregulated in critically ill patients. In the present study, plasma from COVID-19 patients with either severe disease and those that were critically ill was collected and lipid mediator profiles were determined using liquid chromatography tandem mass spectrometry. Results from these studies indicated that plasma concentrations of both pro-inflammatory and pro-resolving lipid mediator were reduced in critically ill patients when compared with those with severe disease. Furthermore, plasma concentrations of a select group of mediators that included the specialized pro-resolving mediators (SPM) Resolvin (Rv) D1 and RvE4 were diagnostic of disease severity. Interestingly, peripheral blood SPM concentrations were also linked with outcome in critically ill patients, where we observed reduced overall concentrations of these mediators in those patients that did not survive. Together the present findings establish a link between plasma lipid mediators and disease severity in patients with COVID-19 and indicate that plasma SPM concentrations may be linked with survival in these patients

    Emerging applications of nanotechnology for diagnosis and therapy of disease: a review

    Get PDF
    Nanotechnology is of increasing interest in the fields of medicine and physiology over recent years. Its application could considerably improve disease detection and therapy, and although the potential is considerable, there are still many challenges, which need to be addressed before it is accepted in routine clinical use. This review focuses on emerging applications that nanotechnology could enhance or provide new approaches in diagnoses and therapy. The main focus of recent research centres on targeted therapies and enhancing imaging; however, the introduction of nanomaterial into the human body must be controlled, as there are many issues with possible toxicity and long-term effects. Despite these issues, the potential for nanotechnology to provide new methods of combating cancer and other disease conditions is considerable. There are still key challenges for researchers in this field, including the means of delivery and targetting in the body to provide effective treatment for specific disease conditions. Nanoparticles are difficult to measure due to the size and physical properties; hence there is still a great need to improve physiological measurements method in the field to ascertain how effective their use is in the human subject. This review is a brief snapshot into the fast changing research field of measurement and physiological links to nanoparticle use and its potential in the future

    Evaluation of Important Treatment Parameters in Supraphysiological Thermal Therapy of Human Liver Cancer HepG2 Cells

    Get PDF
    This study was aimed at simulating the effect of various treatment parameters like heating rate (HR), peak temperature (PT) and hold/total treatment time on the viability of human liver cancer HepG2 cells subjected to different thermal therapy conditions. The problem was approached by investigating the injury kinetics obtained using experimentally measured viability of the cells, heated to temperatures of 50–70°C for 0–9 min at HRs of 100, 200, 300 and 525°C min(−1). An empirical expression obtained between the activation energy (E) and HR was extended to obtain the E values over a broad range of HRs from 5 to 600°C min(−1) that mimic the actual conditions encountered in a typical thermal therapy protocol. Further, the effect of the HR (5–600°C min(−1)) and PT (50–85°C) on the cell survival was studied over a range of hold times. A significant drop in survival from 90% to 0% with the simultaneous increase in HR and PT was observed as the hold time increased from 0 to 5 min. For complete cell death, the hold time increased with the increase in the HR for a given PT, while the total time showed presence of minima for 60, 65 and 70°C at HRs of 50, 100 and 200°C min(−1), respectively

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Cosmogenic neutron production at the Sudbury Neutrino Observatory

    Get PDF
    Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB

    Drug Repurposing: Far Beyond New Targets for Old Drugs

    Get PDF
    Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach is of interest primarily because we continue to face significant gaps in the drug–target interactions matrix and to accumulate safety and efficacy data during clinical studies. Collecting and making publicly available as much data as possible on the target profile of drugs offer opportunities for drug repurposing, but may limit the commercial applications by patent applications. Certain clinical applications may be more feasible for repurposing than others because of marked differences in side effect tolerance. Other factors that ought to be considered when assessing drug repurposing opportunities include relevance to the disease in question and the intellectual property landscape. These activities go far beyond the identification of new targets for old drugs
    • …
    corecore