545 research outputs found

    Seriation and Multidimensional Scaling: A Data Analysis Approach to Scaling Asymmetric Proximity Matrices

    Get PDF
    A number of model-based scaling methods have been developed that apply to asymmetric proximity matrices. A flexible data analysis approach is pro posed that combines two psychometric procedures— seriation and multidimensional scaling (MDS). The method uses seriation to define an empirical order ing of the stimuli, and then uses MDS to scale the two separate triangles of the proximity matrix defined by this ordering. The MDS solution con tains directed distances, which define an "extra" dimension that would not otherwise be portrayed, because the dimension comes from relations between the two triangles rather than within triangles. The method is particularly appropriate for the analysis of proximities containing temporal information. A major difficulty is the computa tional intensity of existing seriation algorithms, which is handled by defining a nonmetric seriation algorithm that requires only one complete itera tion. The procedure is illustrated using a matrix of co-citations between recent presidents of the Psychometric Society.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Quasi-Normal Modes of Schwarzschild Anti-De Sitter Black Holes: Electromagnetic and Gravitational Perturbations

    Get PDF
    We study the quasi-normal modes (QNM) of electromagnetic and gravitational perturbations of a Schwarzschild black hole in an asymptotically Anti-de Sitter (AdS) spacetime. Some of the electromagnetic modes do not oscillate, they only decay, since they have pure imaginary frequencies. The gravitational modes show peculiar features: the odd and even gravitational perturbations no longer have the same characteristic quasinormal frequencies. There is a special mode for odd perturbations whose behavior differs completely from the usual one in scalar and electromagnetic perturbation in an AdS spacetime, but has a similar behavior to the Schwarzschild black hole in an asymptotically flat spacetime: the imaginary part of the frequency goes as 1/r+, where r+ is the horizon radius. We also investigate the small black hole limit showing that the imaginary part of the frequency goes as r+^2. These results are important to the AdS/CFT conjecture since according to it the QNMs describe the approach to equilibrium in the conformal field theory.Comment: 2 figure

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System

    Get PDF
    For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017

    Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres

    Get PDF
    Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4
    corecore