11 research outputs found

    A High-Resolution MRI Study of Relationship between Remodeling Patterns and Ischemic Stroke in Patients with Atherosclerotic Middle Cerebral Artery Stenosis

    Get PDF
    Purpose: Recently, high-resolution magnetic resonance imaging (HR-MRI) has been used to depict the wall characteristics of the intracranial arteries. The aim of this study was to explain the relationship between the remodeling patterns and acute ischemic stroke in patients with atherosclerotic middle cerebral artery (MCA) stenosis using HR-MRI.Materials and Methods: From August 2015 to May 2016, we prospectively screened 33 consecutive patients with unilateral MCA stenosis using time-to-flight MR angiography, including 15 patients with symptomatic MCA stenosis and 18 patients with asymptomatic MCA stenosis. Among them, 14 patients were diagnosed as positive remodeling (PR) and 19 as negative remodeling or non-remodeling. The cross-sectional images of the stenotic MCA wall on HR-MRI including T1WI, T2WI, and PDWI were compared between the symptomatic group and the asymptomatic group as well as the PR group and the non-PR group, based on the vessel area, lumen area, wall area, plaque area, degree of stenosis, remodeling index, and NIHSS score.Results: The symptomatic group had larger wall area (P = 0.040), plaque area (P<0.001), degree of stenosis (P = 0.038), remodeling index (P < 0.001), and NIHSS score (P = 0.003) as well as smaller lumen area (P = 0.001) than the asymptomatic group. In addition, more PR patients were observed in symptomatic group. The PR group had larger plaque area (P = 0.014) and NIHSS score (P = 0.037) than the non-PR group. Demographic and clinical characteristics between the symptomatic group and the asymptomatic group, the PR group and the non-PR group showed no statistical difference.Conclusion: The current study suggests that the HR-MRI has emerged as a promising tool to detect the characteristics of intracranial arteries wall and reveal the relationship between remodeling patterns and ischemic stroke. The PR is an unsafe remodeling way and is prone to cause acute ischemic stroke

    Increased Resting-State Cerebellar-Cerebral Functional Connectivity Underlying Chronic Tinnitus

    No full text
    Purpose: Chronic subjective tinnitus may arise from aberrant functional coupling between the cerebellum and the cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to illuminate the functional connectivity network of the cerebellar regions in chronic tinnitus patients and controls.Methods: Resting-state fMRI scans were obtained from 28 chronic tinnitus patients and 29 healthy controls (well matched for age, sex and education) in this study. Cerebellar-cerebral functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting cerebellar functional connectivity measures were correlated with each clinical tinnitus characteristic.Results: Chronic tinnitus patients demonstrated increased functional connectivity between the cerebellum and several cerebral regions, including the superior temporal gyrus (STG), parahippocampal gyrus (PHG), inferior occipital gyrus (IOG), and precentral gyrus. The enhanced functional connectivity between the left cerebellar Lobule VIIb and the right STG was positively correlated with the Tinnitus Handicap Questionnaires (THQ) score (r = 0.577, p = 0.004). Furthermore, the increased functional connectivity between the cerebellar vermis and the right STG was also associated with the THQ score (r = 0.432, p = 0.039).Conclusions: Chronic tinnitus patients have greater cerebellar functional connectivity to certain cerebral brain regions which is associated with specific tinnitus characteristics. Resting-state cerebellar-cerebral functional connectivity disturbances may play a pivotal role in neuropathological features of tinnitus

    Presbycusis Disrupts Spontaneous Activity Revealed by Resting-State Functional MRI

    No full text
    Purpose: Presbycusis, age-related hearing loss, is believed to involve neural changes in the central nervous system, which is associated with an increased risk of cognitive impairment. The goal of this study was to determine if presbycusis disrupted spontaneous neural activity in specific brain areas involved in auditory processing, attention and cognitive function using resting-state functional magnetic resonance imaging (fMRI) approach.Methods: Hearing and resting-state fMRI measurements were obtained from 22 presbycusis patients and 23 age-, sex- and education-matched healthy controls. To identify changes in spontaneous neural activity associated with age-related hearing loss, we compared the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) of fMRI signals in presbycusis patients vs. controls and then determined if these changes were linked to clinical measures of presbycusis.Results: Compared with healthy controls, presbycusis patients manifested decreased spontaneous activity mainly in the superior temporal gyrus (STG), parahippocampal gyrus (PHG), precuneus and inferior parietal lobule (IPL) as well as increased neural activity in the middle frontal gyrus (MFG), cuneus and postcentral gyrus (PoCG). A significant negative correlation was observed between ALFF/ReHo activity in the STG and average hearing thresholds in presbycusis patients. Increased ALFF/ReHo activity in the MFG was positively correlated with impaired Trail-Making Test B (TMT-B) scores, indicative of impaired cognitive function involving the frontal lobe.Conclusions: Presbycusis patients have disrupted spontaneous neural activity reflected by ALFF and ReHo measurements in several brain regions; these changes are associated with specific cognitive performance and speech/language processing. These findings mainly emphasize the crucial role of aberrant resting-state ALFF/ReHo patterns in presbycusis patients and will lead to a better understanding of the neuropathological mechanisms underlying presbycusis
    corecore