46 research outputs found

    Transmission of Plasmodium vivax in South-Western Uganda: Report of Three Cases in Pregnant Women

    Get PDF
    Plasmodium vivax is considered to be rare in the predominantly Duffy negative populations of Sub-Saharan Africa, as this red blood cell surface antigen is essential for invasion by the parasite. However, despite only very few reports of molecularly confirmed P. vivax from tropical Africa, serological evidence indicated that 13% of the persons sampled in Congo had been exposed to P. vivax. We identified P. vivax by microscopy in 8 smears from Ugandan pregnant women who had been enrolled in a longitudinal study of malaria in pregnancy. A nested polymerase chain reaction (PCR) protocol was used to detect and identify the Plasmodium parasites present. PCR analysis confirmed the presence of P. vivax for three of the women and analysis of all available samples from these women revealed clinically silent chronic low-grade vivax infections for two of them. The parasites in one woman carried pyrimethamine resistance-associated double non-synonymous mutations in the P. vivax dihydrofolate reductase gene. The three women found infected with P. vivax were Duffy positive as were nine of 68 women randomly selected from the cohort. The data presented from these three case reports is consistent with stable transmission of malaria in a predominantly Duffy negative African population. Given the substantial morbidity associated with vivax infection in non-African endemic areas, it will be important to investigate whether the distribution and prevalence of P. vivax have been underestimated in Sub-Saharan Africa. This is particularly important in the context of the drive to eliminate malaria and its morbidity

    The global distribution of the Duffy blood group

    Get PDF
    Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*BES variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite

    Duffy Negative Antigen Is No Longer a Barrier to Plasmodium vivax – Molecular Evidences from the African West Coast (Angola and Equatorial Guinea)

    Get PDF
    Recent reports of Plasmodium vivax infections, the most widely distributed species of human malaria, show that this parasite is evolving and adapting, becoming not only more aggressive but also more frequent in countries where it was not present in the past, becoming, therefore, a major source of concern. Thus, it is extremely important to perform new studies of its distribution in West and Central Africa, where there are few reports of its presence, due to the high prevalence of Duffy-negative individuals. The aim of this study was to investigate the presence of P. vivax in Angola and in Equatorial Guinea, using blood samples and mosquitoes. The results showed that P. vivax seems to be able to invade erythrocytes using receptors other than Duffy, and this new capacity is not exclusive to one strain of P. vivax, since we have found samples infected with two different strains: VK247 and classic. Additionally we demonstrated that the parasite has a greater distribution than previously thought, calling for a reevaluation of its worldwide distribution

    Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii

    Get PDF
    In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii

    Species-Specific Immunity Induced by Infection with Entamoeba histolytica and Entamoeba moshkovskii in Mice

    Get PDF
    Entamoeba histolytica, the parasitic amoeba responsible for amoebiasis, causes approximately 100,000 deaths every year. There is currently no vaccine against this parasite. We have previously shown that intracecal inoculation of E. histolytica trophozoites leads to chronic and non-healing cecitis in mice. Entamoeba moshkovskii, a closely related amoeba, also causes diarrhea and other intestinal disorders in this model. Here, we investigated the effect of infection followed by drug-cure of these species on the induction of immunity against homologous or heterologous species challenge. Mice were infected with E. histolytica or E. moshkovskii and treated with metronidazole 14 days later. Re-challenge with E. histolytica or E. moshkovskii was conducted seven or 28 days following confirmation of the clearance of amoebae, and the degree of protection compared to non-exposed control mice was evaluated. We show that primary infection with these amoebae induces a species-specific immune response which protects against challenge with the homologous, but not a heterologous species. These findings pave the way, therefore, for the identification of novel amoebae antigens that may become the targets of vaccines and provide a useful platform to investigate host protective immunity to Entamoeba infections
    corecore