159 research outputs found
Pentacene islands grown on ultra-thin SiO2
Ultra-thin oxide (UTO) films were grown on Si(111) in ultrahigh vacuum at
room temperature and characterized by scanning tunneling microscopy. The
ultra-thin oxide films were then used as substrates for room temperature growth
of pentacene. The apparent height of the first layer is 1.57 +/- 0.05 nm,
indicating standing up pentacene grains in the thin-film phase were formed.
Pentacene is molecularly resolved in the second and subsequent molecular
layers. The measured in-plane unit cell for the pentacene (001) plane (ab
plane) is a=0.76+/-0.01 nm, b=0.59+/-0.01 nm, and gamma=87.5+/-0.4 degrees. The
films are unperturbed by the UTO's short-range spatial variation in tunneling
probability, and reduce its corresponding effective roughness and correlation
exponent with increasing thickness. The pentacene surface morphology follows
that of the UTO substrate, preserving step structure, the long range surface
rms roughness of ~0.1 nm, and the structural correlation exponent of ~1.Comment: 15 pages, 4 figure
Diffusive Charge Transport in Graphene on SiO2
We review our recent work on the physical mechanisms limiting the mobility of
graphene on SiO2. We have used intentional addition of charged scattering
impurities and systematic variation of the dielectric environment to
differentiate the effects of charged impurities and short-range scatterers. The
results show that charged impurities indeed lead to a conductivity linear in
density in graphene, with a scattering magnitude that agrees quantitatively
with theoretical estimates [1]; increased dielectric screening reduces
scattering from charged impurities, but increases scattering from short-range
scatterers [2]. We evaluate the effects of the corrugations (ripples) of
graphene on SiO2 on transport by measuring the height-height correlation
function. The results show that the corrugations cannot mimic long-range
(charged impurity) scattering effects, and have too small an
amplitude-to-wavelength ratio to significantly affect the observed mobility via
short-range scattering [3, 4]. Temperature-dependent measurements show that
longitudinal acoustic phonons in graphene produce a resistivity linear in
temperature and independent of carrier density [5]; at higher temperatures,
polar optical phonons of the SiO2 substrate give rise to an activated, carrier
density-dependent resistivity [5]. Together the results paint a complete
picture of charge carrier transport in graphene on SiO2 in the diffusive
regime.Comment: 28 pages, 7 figures, submitted to Graphene Week proceeding
Black Holes at the LHC
In these two lectures, we will address the topic of the creation of small
black holes during particle collisions in a ground-based accelerator, such as
LHC, in the context of a higher-dimensional theory. We will cover the main
assumptions, criteria and estimates for their creation, and we will discuss
their properties after their formation. The most important observable effect
associated with their creation is likely to be the emission of Hawking
radiation during their evaporation process. After presenting the mathematical
formalism for its study, we will review the current results for the emission of
particles both on the brane and in the bulk. We will finish with a discussion
of the methodology that will be used to study these spectra, and the observable
signatures that will help us identify the black-hole events.Comment: 37 pages, 14 figures, lectures presented in the 4th Aegean Summer
School on Black Holes, 17-22 September 2007, Lesvos, Greece, typos corrected,
comments and references adde
Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing
Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade
Intoxicação experimental por Trema micrantha (Cannabaceae) em equinos
O objetivo desse estudo foi confirmar a toxidez e caracterizar os aspectos clínicos e patológicos da intoxicação por Trema micrantha em equinos. Três equinos, pôneis, com idade entre 2 e 7 anos consumiram espontaneamente folhas de T. micrantha em doses únicas de 30g/kg, 25g/ kg e 20g/kg. Os três animais adoeceram e evoluíram para morte. Outro equino recebeu 15 e 25g/kg da planta com intervalo de 30 dias entre as doses e não apresentou alteração clínica. Coletas diárias de sangue foram realizadas para análises bioquímicas. Os principais sinais clínicos apresentados foram apatia, desequilíbrios, dificuldade de deglutição, decúbito esternal, decúbito lateral, movimentos de pedalagem, coma e morte. Os três equinos afetados apresentaram elevação da atividade sérica de gama-glutamil transferase, dos níveis séricos de amônia e diminuição da glicemia. Esses animais foram necropsiados e fragmentos de diversos órgãos foram coletados para análise histopatológica e imuno-histoquímica. Os principais achados patológicos foram encontrados no fígado e no encéfalo dos três animais. O fígado apresentava, macroscopicamente, acentuação do padrão lobular; enquanto que, no encéfalo havia áreas amareladas na superfície de corte, mais evidentes na substância branca do cerebelo. Microscopicamente, o fígado apresentava tumefação hepatocelular, necrose de coagulação predominantemente centrolobular e hemorragia associada. No encéfalo, havia edema perivascular generalizado e astrócitos Alzheimer tipo II na substância cinzenta. Esses astrócitos apresentaram marcação fraca ou negativa na imuno-histoquímica anti-GFAP e marcação positiva do antígeno S-100. A dose letal mínima de folhas de T. micrantha estabelecida nesse experimento foi de 20g/kg. A ampla distribuição e palatabilidade desta planta, associadas à alta sensibilidade da espécie equina, constatada nesse experimento, reforçam a importância da planta em casos acidentais de intoxicação em equinos
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b
We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
- …