49 research outputs found

    Structural and Content Diversity of Mitochondrial Genome in Beet: A Comparative Genomic Analysis

    Get PDF
    Despite their monophyletic origin, mitochondrial (mt) genomes of plants and animals have developed contrasted evolutionary paths over time. Animal mt genomes are generally small, compact, and exhibit high mutation rates, whereas plant mt genomes exhibit low mutation rates, little compactness, larger sizes, and highly rearranged structures. We present the (nearly) whole sequences of five new mt genomes in the Beta genus: four from Beta vulgaris and one from B. macrocarpa, a sister species belonging to the same Beta section. We pooled our results with two previously sequenced genomes of B. vulgaris and studied genome diversity at the species level with an emphasis on cytoplasmic male-sterilizing (CMS) genomes. We showed that, contrary to what was previously assumed, all three CMS genomes belong to a single sterile lineage. In addition, the CMSs seem to have undergone an acceleration of the rates of substitution and rearrangement. This study suggests that male sterility emergence might have been favored by faster rates of evolution, unless CMS itself caused faster evolution

    Adaptive Value of Phenological Traits in Stressful Environments: Predictions Based on Seed Production and Laboratory Natural Selection

    Get PDF
    Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously

    Evidence for gene flow via seed dispersal from crop to wild relatives in Beta vulgaris (Chenopodiaceae): consequences for the release of genetically modified crop species with weedy lineages.

    No full text
    Gene flow and introgression from cultivated to wild plant populations have important evolutionary and ecological consequences and require detailed investigations for risk assessments of transgene escape into natural ecosystems. Sugar beets (Beta vulgaris ssp. vulgaris) are of particular concern because: (i) they are cross-compatible with their wild relatives (the sea beet, B. vulgaris ssp. maritima); (ii) crop-to-wild gene flow is likely to occur via weedy lineages resulting from hybridization events and locally infesting fields. Using a chloroplastic marker and a set of nuclear microsatellite loci, the occurrence of crop-to-wild gene flow was investigated in the French sugar beet production area within a 'contact-zone' in between coastal wild populations and sugar beet fields. The results did not reveal large pollen dispersal from weed to wild beets. However, several pieces of evidence clearly show an escape of weedy lineages from fields via seed flow. Since most studies involving the assessment of transgene escape from crops to wild outcrossing relatives generally focused only on pollen dispersal, this last result was unexpected: it points out the key role of a long-lived seed bank and highlights support for transgene escape via man-mediated long-distance dispersal events

    Genome-wide association mapping of flowering time in Arabidopsis thaliana in nature: genetics for underlying components and reaction norms across two successive years.

    No full text
    International audienceOften used as a proxy for the transition to reproduction, flowering time (FT) is an integrative trait of two successive biological processes, i.e. bolting time (BT) and the interval between bolting and flowering time (INT). In this study, we aimed to identify candidate genes associated with these composite traits in Arabidopsis thaliana using a field experiment. Genome-wide association (GWA) mapping was performed on BT, INT and FT based on a sample of 179 worldwide natural accessions genotyped for 216,509 SNPs. The high resolution conferred by GWA mapping indicates that FT is an integrative trait at the genetic level, with distinct genetics for BT and INT. BT is shaped largely by genes involved in the circadian clock whereas INT is shaped by genes involved in both the hormone pathways and cold acclimation. Finally, the florigen TSF appears to be the main integrator of environmental and internal signals in ecologically realistic conditions. Based on FT scored in a previous field experiment, we also studied the genetics underlying reaction norms across two years. Only four genes were common to both years, emphasizing the need to repeat field experiments. The gene regulation model appeared as the main genetic model for genotype Ă— year interactions

    Mitochondrial DNA diversity and male sterility in natural populations of Daucus carota ssp carota

    No full text
    International audienceMitochondrial variability was investigated in natural populations of wild carrot (Daucus carota ssp carota) in different regions: South of France, Greece, and various sites in the Mediterranean Basin and Asia. Total DNA was digested with two restriction endonucleases (EcoRV and HindIII) and probed with three mitochon-drial DNA-specific genes (coxI, atp6, and coxlI). Twenty-five different mitochondrial types were found in 80 analyzed individuals. Thirteen mitotypes were found among the 7 French populations studied. On average, 4.4 different mitotypes were observed per population, and these mitotypes were well-distributed among the populations. All of the mitochondrial types were specific to a single region. However, the proportion of shared restriction fragments between 2 mitotypes from different regions was not particularly lower than that which occurred among mitotypes from a single region. On the basis of the sexual phenotype [male-sterile (MS) or hermaphrodite] of the plants studied in situ and that of their progeny, 2 mitotypes were found to be highly associated with male sterility. Eighty percent of the plants bearing these mitotypes were MS in situ, and all of these plants produced more than 30% MS plants in Communicated by R. Hagemann J. Ronfort ([]) D6partement de biologie des populations, Centre d'Ecologie Fon-ctionnelle et Evolutive (CEFE), CNRS, 1919, Route de Mende, B.P. 5051-34033 Montpellier Cedex France P. Saumitou-Laprade Laboratoire de G6netique et Evolution des populations v6g6tales, 237, Universitb Paris vi, 75252 Paris Cedex France their progeny. This association with male sterility was consistent in several populations, suggesting an association with a cytoplasmic male-sterility system. Moreover , these two mitotypes had very similar mitochon-drial DNA restriction patterns and were well-differentiated from the other mitotypes observed in wild plants and also from those observed in the two CMS types already known in the cultivated carrot. This suggests that they correspond to a third cytoplasmic sterility. Key words RFLP 9 Mitochondrial DNA diversity 9 Natural populations 9 Cytoplasmic male sterility 9 Daucus carota L
    corecore