538 research outputs found

    Detection of G12 Human Rotaviruses in Nepal

    Get PDF
    Of 731 stool specimens collected from children with diarrhea in Kathmandu, Nepal, from August 2004 through July 2005, 170 (23.3%) tested positive for rotavirus. Reverse transcription–PCR, including a revised G12-specific primer set, identified 56 (32.9%) as G2P[4] and 39 (23.0%) as G12 with P[6], P[8], or P[4]

    Detection of G12 human rotaviruses in Nepal

    Get PDF
    Of 731 stool specimens collected from children with diarrhea in Kathmandu, Nepal, from August 2004 through July 2005, 170 (23.3%) tested positive for rotavirus. Reverse transcription-PCR, including a revised G12-specific primer set, identified 56 (32.9%) as G2P[4] and 39 (23.0%) as G12 with P[6], P[8], or P[4]

    Disruption of CUL3-mediated ubiquitination causes proximal tubule injury and kidney fibrosis

    Get PDF
    Cullin 3 (CUL3) is part of the ubiquitin proteasomal system and controls several cellular processes critical for normal organ function including the cell cycle, and Keap1/Nrf2 signaling. Kidney tubule-specific Cul3 disruption causes tubulointerstitial fibrosis, but little is known about the mechanisms. Therefore, we tested the hypothesis that dysregulation of the cell cycle and Keap1/Nrf2 pathway play a role in initiating the kidney injury upon Cul3 disruption. Cul3 deletion increased expression of cyclin E and p21, associated with uncontrolled proliferation, DNA damage, and apoptosis, all of which preceded proximal tubule injury. The cdk2-cyclin E inhibitor roscovitine did not prevent the effects of Cul3 deletion, but instead exacerbated the kidney injury. Injury occurred despite accumulation and activation of CUL3 substrate Keap1/Nrf2, proposed to be protective in kidney injury. Cul3 disruption led to progressive interstitial inflammation, functionally relevant renal fibrosis and death. Finally, we observed reduced CUL3 expression in several AKI and CKD mouse models and in fibrotic human kidney tissue. These data establish CUL3 knockout mice as a novel genetic CKD model in which dysregulation of the cell cycle may play a primary role in initiating tubule injury, and that CUL3 dysregulation could contribute to acute and fibrotic kidney disease

    Synthesis of monoclinic Celsian from coal fly ash by using a one-step solid-state reaction

    Get PDF
    Monoclinic (Celsian) and hexagonal (Hexacelsian) Ba1−xSrxAl2Si2O8 solid solutions, where x = 0, 0.25, 0.375, 0.5, 0.75 or 1, were synthesized by using Coal Fly Ash (CFA) as main raw material, employing a simple one-step solid-state reaction process involving thermal treatment for 5 h at 850–1300 °C. Fully monoclinic Celsian was obtained at 1200 °C/5 h, for SrO contents of 0.25 ≤ x ≤ 0.75. However, an optimum SrO level of 0.25 ≤ x ≤ 0.375 was recommended for the stabilization of Celsian. These synthesis conditions represent a significant improvement over the higher temperatures, longer times and/or multi-step processes needed to obtain fully monoclinic Celsian, when other raw materials are used for this purpose, according to previous literature. These results were attributed to the role of the chemical and phase constitution of CFA as well as to a likely mineralizing effect of CaO and TiO2 present in it, which enhanced the Hexacelsian to Celsian conversion

    Very short-lived halogens amplify ozone depletion trends in the tropical lower stratosphere

    Get PDF
    In contrast to the general stratospheric ozone recovery following international agreements, recent observations show an ongoing net ozone depletion in the tropical lower stratosphere (LS). This depletion is thought to be driven by dynamical transport accelerated by global warming, while chemical processes have been considered to be unimportant. Here we use a chemistry–climate model to demonstrate that halogenated ozone-depleting very short-lived substances (VSLS) chemistry may account for around a quarter of the observed tropical LS negative ozone trend in 1998–2018. VSLS sources include both natural and anthropogenic emissions. Future projections show the persistence of the currently unaccounted for contribution of VSLS to ozone loss throughout the twenty-first century in the tropical LS, the only region of the global stratosphere not projecting an ozone recovery by 2100. Our results show the need for mitigation strategies of anthropogenic VSLS emissions to preserve the present and future ozone layer in low latitudes

    Practical procedure for discriminating monofloral honey with a broad pollen profile variability using an electronic tongue

    Get PDF
    Colour and floral origin are key parameters that may influence the honey market. Monofloral light honey are more demanded by consumers, mainly due to their flavour, being more valuable for producers due to their higher price when compared to darker honey. The latter usually have a high anti-oxidant content that increases their healthy potential. This work showed that it is possible to correctly classify monofloral honey with a high variability in floral origin with a potentiometric electronic tongue after making a preliminary selection of honey according their colours: white, amber and dark honey. The results showed that the device had a very satisfactory sensitivity towards floral origin (Castanea sp., Echium sp., Erica sp., Lavandula sp., Prunus sp. and Rubus sp.), allowing a leave-one-out cross validation correct classification of 100%. Therefore, the E-tongue shows potential to be used at analytical laboratory level for honey samples classification according to market and quality parameters, as a practical tool for ensuring monofloral honey authenticity

    Natural short-lived halogens exert an indirect cooling effect on climate

    Get PDF
    Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1,2,3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4,5,6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth’s radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (−0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (−0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by −0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18–31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth’s climate system

    Global environmental implications of atmospheric methane removal through chlorine-mediated chemistry-climate interactions

    Get PDF
    Atmospheric methane is both a potent greenhouse gas and photochemically active, with approximately equal anthropogenic and natural sources. The addition of chlorine to the atmosphere has been proposed to mitigate global warming through methane reduction by increasing its chemical loss. However, the potential environmental impacts of such climate mitigation remain unexplored. Here, sensitivity studies are conducted to evaluate the possible effects of increasing reactive chlorine emissions on the methane budget, atmospheric composition and radiative forcing. Because of non-linear chemistry, in order to achieve a reduction in methane burden (instead of an increase), the chlorine atom burden needs to be a minimum of three times the estimated present-day burden. If the methane removal target is set to 20%, 45%, or 70% less global methane by 2050 compared to the levels in the Representative Concentration Pathway 8.5 scenario (RCP8.5), our modeling results suggest that additional chlorine fluxes of 630, 1250, and 1880 Tg Cl/year, respectively, are needed. The results show that increasing chlorine emissions also induces significant changes in other important climate forcers. Remarkably, the tropospheric ozone decrease is large enough that the magnitude of radiative forcing decrease is similar to that of methane. Adding 630, 1250, and 1880 Tg Cl/year to the RCP8.5 scenario, chosen to have the most consistent current-day trends of methane, will decrease the surface temperature by 0.2, 0.4, and 0.6 °C by 2050, respectively. The quantity and method in which the chlorine is added, its interactions with climate pathways, and the potential environmental impacts on air quality and ocean acidity, must be carefully considered before any action is taken
    • …
    corecore