201 research outputs found

    An Ecological and Evolutionary Framework for Commensalism in Anthropogenic Environments

    Get PDF
    Acknowledgements We would like to thank Jean-Denis Vigne, members of the Searle lab, and SNEEB at Cornell University for a stimulating environment and many early discussions and comments. We would also like to thank Maeve McMahon for comments on the manuscript.Peer reviewedPublisher PD

    Ancient Urban Ecology Reconstructed from Archaeozoological Remains of Small Mammals in the Near East

    Get PDF
    Acknowledgments We especially thank the many archaeologists who collaborated closely with our project and invested pioneering efforts in intensive fine-scale retrieval of the archaeozoological samples that provided the basis for this study: Shai Bar, Amnon Ben-Tor, Amit Dagan, Yosef Garfinkel, Ayelet Gilboa, Zvi Greenhut, Amihai Mazar, Stefan Munger, Ronny Reich, Itzhaq Shai, Ilan Sharon, Joe Uziel, Sharon Zuckerman, and additional key excavation personnel who were instrumental in collection of the samples or in assisting the work including: Shimrit Bechar, Jacob Dunn, Norma Franklin, Egon Lass and Yiftah Shalev. Funding:The research was funded by a post-doctoral grant awarded to L.W. from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007e2013)/ERC grant agreement number 229418. The laboratory work was also supported by funding by the Israel Science Foundation (Grant 52/10). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Phenotype and animal domestication : A study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements We thank the institutions and individuals that provided access to collections, especially the curators of the Museum für Naturkunde, Berlin; Zoologische Staatssammlung, München; Muséum National d’Histoire Naturelle, Paris; Muséum d’Histoire Naturelle, Genève; National Museum of Natural History, Washington; The Field Museum, Chicago and The American Museum of Natural History, New-York. We also thank Jean-Denis Vigne, Nelly Gidaszewski, Vincent Debat and Mathieu Joron for fruitful discussions. This work was supported by a research grant from the Natural Environment Research Council, UK (grant number NE/F003382/1).Peer reviewedPublisher PD

    A test for paedomorphism in domestic pig cranial morphology

    Get PDF
    Domestic animals are often described as paedomorphic, meaning that they retain juvenile characteristics into adulthood. Through a three-dimensional landmark-based geometric morphometric analysis of cranial morphology at three growth stages, we demonstrate that wild boar (n = 138) and domestic pigs (n = 106) (Sus scrofa) follow distinct ontogenetic trajectories. With the exception of the size ratio between facial and neurocranial regions, paedomorphism does not appear to be the primary pattern describing the observed differences between wild and domestic pig cranial morphologies. The cranial phenotype of domestic pigs instead involves developmental innovation during domestication. This result questions the long-standing assumption that domestic animal phenotypes are paedomorphic forms of their wild counterpart

    Deep learning for species identification of modern and fossil rodent molars

    Get PDF
    Reliable identification of species is a key step to assess biodiversity. In fossil and archaeological contexts, genetic identifications remain often difficult or even impossible and morphological criteria are the only window on past biodiversity. Methods of numerical taxonomy based on geometric morphometric provide reliable identifications at the specific and even intraspecific levels, but they remain relatively time consuming and require expertise on the group under study. Here, we explore an alternative based on computer vision and machine learning. The identification of three rodent species based on pictures of their molar tooth row constituted the case study. We focused on the first upper molar in order to transfer the model elaborated on modern, genetically identified specimens to isolated fossil teeth. A pipeline based on deep neural network automatically cropped the first molar from the pictures, and returned a prediction regarding species identification. The deep-learning approach performed equally good as geometric morphometrics and, provided an extensive reference dataset including fossil teeth, it was able to successfully identify teeth from an archaeological deposit that was not included in the training dataset. This is a proof-of-concept that such methods could allow fast and reliable identification of extensive amounts of fossil remains, often left unstudied in archaeological deposits for lack of time and expertise. Deep-learning methods may thus allow new insights on the biodiversity dynamics across the last 10.000 years, including the role of humans in extinction or recent evolution

    Social complexification and pig (Sus scrofa) husbandry in ancient China : a combined geometric morphometric and isotopic approach

    Get PDF
    Funding: This work was supported by the CNRSCASS program for the training of Chinese PhD students.Peer reviewedPublisher PD
    corecore