277 research outputs found

    The C. elegans dosage compensation complex mediates interphase X chromosome compaction

    Full text link
    Abstract Background Dosage compensation is a specialized gene regulatory mechanism which equalizes X-linked gene expression between sexes. In Caenorhabditis elegans, dosage compensation is achieved by the activity of the dosage compensation complex (DCC). The DCC localizes to both X chromosomes in hermaphrodites to downregulate gene expression by half. The DCC contains a subcomplex (condensin IDC) similar to the evolutionarily conserved condensin complexes which play fundamental roles in chromosome dynamics during mitosis and meiosis. Therefore, mechanisms related to mitotic chromosome condensation have been long hypothesized to mediate dosage compensation. However experimental evidence was lacking. Results Using 3D FISH microscopy to measure the volumes of X and chromosome I territories and to measure distances between individual loci, we show that hermaphrodite worms deficient in DCC proteins have enlarged interphase X chromosomes when compared to wild type. By contrast, chromosome I is unaffected. Interestingly, hermaphrodite worms depleted of condensin I or II show no phenotype. Therefore X chromosome compaction is specific to condensin IDC. In addition, we show that SET-1, SET-4, and SIR-2.1, histone modifiers whose activity is regulated by the DCC, need to be present for the compaction of the X chromosome territory. Conclusion These results support the idea that condensin IDC, and the histone modifications regulated by the DCC, mediate interphase X chromosome compaction. Our results link condensin-mediated chromosome compaction, an activity connected to mitotic chromosome condensation, to chromosome-wide repression of gene expression in interphase.http://deepblue.lib.umich.edu/bitstream/2027.42/109510/1/13072_2014_Article_335.pd

    Regulation of DCC Localization by HTZ-1/H2A.Z and DPY-30 Does not Correlate with H3K4 Methylation Levels

    Get PDF
    Dosage compensation is a specialized form of gene regulation that balances sex-chromosome linked gene expression between the sexes. In C. elegans, dosage compensation is achieved by the activity of the dosage compensation complex (DCC). The DCC binds along both X chromosomes in hermaphrodites to down-regulate gene expression by half, limiting X-linked gene products to levels produced in XO males. Sequence motifs enriched on the X chromosome play an important role in targeting the DCC to the X. However, these motifs are not strictly X-specific and therefore other factors, such as the chromatin environment of the X chromosome, are likely to aid in DCC targeting. Previously, we found that loss of HTZ-1 results in partial disruption of dosage compensation localization to the X chromosomes. We wanted to know whether other chromatin components coordinated with HTZ-1 to regulate DCC localization. One candidate is DPY-30, a protein known to play a role in DCC localization. DPY-30 homologs in yeast, flies, and mammals are highly conserved members of histone H3 lysine 4 (H3K4) methyltransferase Set1/MLL complexes. Therefore, we investigated the hypothesis that the dosage compensation function of DPY-30 involves H3K4 methylation. We found that in dpy-30 animals the DCC fails to stably bind chromatin. Interestingly, of all the C. elegans homologs of Set1/MLL complex subunits, only DPY-30 is required for stable DCC binding to chromatin. Additionally, loss of H3K4 methylation does not enhance DCC mislocalization in htz-1 animals. We conclude that DPY-30 and HTZ-1 have unique functions in DCC localization, both of which are largely independent of H3K4 methylation

    A görög válság - az euróövezet drámája = The Greek crisis - drama of the euro area

    Get PDF
    A jelenlegi görög válság – bár a globális pénzügyi válsággal egy időben bontakozott ki – legfőképpen tartós és krónikus belső problémákból ered. Ezeket egészítette ki a külső válság negatív hatása, mely kezdetben indirekt volt, és amelyet a görög gazdaság gyengeségei, a nagy strukturális egyensúlytalanságok tovább erősítettek. Görögország emellett óriási fizetési mérleg hiányban is szenved, ami az euró bevezetése után növekedett meg igazán. A nagy költségvetési hiány – a több éves gyors gazdasági növekedés ellenére – további jele volt a szerkezeti gyengeségeknek. Görögország helyzete láthatóan fenntarthatatlan, így az ország tragédiája várható volt, ahol a válság kialakulására sok jel utalt, és ahol az évek során számos korrekciós lehetőséget elszalasztott a görög vezetés. A tanulmány elsősorban ezekre a problémákra mutat rá, valamint a válság kezelésének eddigi lépéseit ismerteti. The current Greek crisis springs mainly from persistent and chronic internal problems – although evolved parallel to the global financial crisis. The initial negative effects of the global economic crisis were indirect, triggered by the weaknesses of the country arose from the enormous structural imbalances. The Greek economy also experiences an enormous current account deficit, which expanded strongly after the adoption of the euro. In spite of several years of rapid growth, the huge budget deficit was an additional sign of the structural weaknesses. Greece’s circumstances were clearly unsustainable, thus the Greek crisis was an expectable tragedy where there were several signs for a possible serious crisis and many missed opportunities to handle the problems as well. The study concerns with these factors and investigates the steps of the Greek crisis management

    H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization.

    Get PDF
    Histone lysine (K) methylation has been shown to play a fundamental role in modulating chromatin architecture and regulation of gene expression. Here we report on the identification of histone H3K56, located at the pivotal, nucleosome DNA entry/exit point, as a novel methylation site that is evolutionary conserved. We identify trimethylation of H3K56 (H3K56me3) as a modification that is present during all cell cycle phases, with the exception of S-phase, where it is underrepresented on chromatin. H3K56me3 is a novel heterochromatin mark, since it is enriched at pericentromeres but not telomeres and is thereby similar, but not identical, to the localization of H3K9me3 and H4K20me3. Possibly due to H3 sequence similarities, Suv39h enzymes, responsible for trimethylation of H3K9, also affect methylation of H3K56. Similarly, we demonstrate that trimethylation of H3K56 is removed by members of the JMJD2 family of demethylases that also target H3K9me3. Furthermore, we identify and characterize mouse mJmjd2E and its human homolog hKDM4L as novel, functionally active enzymes that catalyze the removal of two methyl groups from trimethylated H3K9 and K56. H3K56me3 is also found in C. elegans, where it co-localizes with H3K9me3 in most, but not all, tissues. Taken together, our findings raise interesting questions regarding how methylation of H3K9 and H3K56 is regulated in different organisms and their functional roles in heterochromatin formation and/or maintenance

    An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males

    Get PDF
    Abstract Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes.http://deepblue.lib.umich.edu/bitstream/2027.42/134665/1/13072_2016_Article_97.pd

    Contrasting roles of condensin I and condensin II in mitotic chromosome formation

    Get PDF
    © 2012. Published by The Company of Biologists LtdIn vertebrates, two condensin complexes exist, condensin I and condensin II, which have differing but unresolved roles in organizing mitotic chromosomes. To dissect accurately the role of each complex in mitosis, we have made and studied the first vertebrate conditional knockouts of the genes encoding condensin I subunit CAP-H and condensin II subunit CAP-D3 in chicken DT40 cells. Live-cell imaging reveals highly distinct segregation defects. CAP-D3 (condensin II) knockout results in masses of chromatin-containing anaphase bridges. CAP-H (condensin I)-knockout anaphases have a more subtle defect, with chromatids showing fine chromatin fibres that are associated with failure of cytokinesis and cell death. Super-resolution microscopy reveals that condensin-I-depleted mitotic chromosomes are wider and shorter, with a diffuse chromosome scaffold, whereas condensin-II-depleted chromosomes retain a more defined scaffold, with chromosomes more stretched and seemingly lacking in axial rigidity. We conclude that condensin II is required primarily to provide rigidity by establishing an initial chromosome axis around which condensin I can arrange loops of chromatin.This work was supported by an Australian Research Council discovery project [grant number DP110100784 to D.F.H., K.H.A.C. and W.C.E.]; National Health and Medical Research Council (NHMRC) project grants [APP1030358 and 546454]; an NHMRC RD Wright Fellowship to P.K.; an NHMRC Senior Research Fellowship to C.B.W.; an NHMRC Senior Principal Research Fellowship to K.H.A.C.; and by the Victorian Government’s Operational Infrastructure Support Progra

    Early Loss of Xist RNA Expression and Inactive X Chromosome Associated Chromatin Modification in Developing Primordial Germ Cells

    Get PDF
    The inactive X chromosome characteristic of female somatic lineages is reactivated during development of the female germ cell lineage. In mouse, analysis of protein products of X-linked genes and/or transgenes located on the X chromosome has indicated that reactivation occurs after primordial germ cells reach the genital ridges.We present evidence that the epigenetic reprogramming of the inactive X-chromosome is initiated earlier than was previously thought, around the time that primordial germ cells (PGCs) migrate through the hindgut. Specifically, we find that Xist RNA expression, the primary signal for establishment of chromosome silencing, is extinguished in migrating PGCs. This is accompanied by displacement of Polycomb-group repressor proteins Eed and Suz(12), and loss of the inactive X associated histone modification, methylation of histone H3 lysine 27.We conclude that X reactivation in primordial germ cells occurs progressively, initiated by extinction of Xist RNA around the time that germ cells migrate through the hindgut to the genital ridges. The events that we observe are reminiscent of X reactivation of the paternal X chromosome in inner cell mass cells of mouse pre-implantation embryos and suggest a unified model in which execution of the pluripotency program represses Xist RNA thereby triggering progressive reversal of epigenetic silencing of the X chromosome
    • …
    corecore