238 research outputs found

    Effect of hydrogen bond cooperativity on the behavior of water

    Full text link
    Four scenarios have been proposed for the low--temperature phase behavior of liquid water, each predicting different thermodynamics. The physical mechanism which leads to each is debated. Moreover, it is still unclear which of the scenarios best describes water, as there is no definitive experimental test. Here we address both open issues within the framework of a microscopic cell model by performing a study combining mean field calculations and Monte Carlo simulations. We show that a common physical mechanism underlies each of the four scenarios, and that two key physical quantities determine which of the four scenarios describes water: (i) the strength of the directional component of the hydrogen bond and (ii) the strength of the cooperative component of the hydrogen bond. The four scenarios may be mapped in the space of these two quantities. We argue that our conclusions are model-independent. Using estimates from experimental data for H bond properties the model predicts that the low-temperature phase diagram of water exhibits a liquid--liquid critical point at positive pressure.Comment: 18 pages, 3 figure

    Variation in Sex Allocation and Floral Morphology in an Expanding Distylous Plant Hybrid Complex

    Get PDF
    Premise of research. Sex allocation, the relative energy devoted to producing pollen, ovules, and floral displays, can significantly affect reproductive output and population dynamics. In this study, we investigated floral morphology and gamete production in bisexual, distylous plants from a self-incompatible hybrid complex (Piriqueta cistoides ssp. caroliniana Walter [Arbo]; Turneraceae). Sampling focused on two parent types (C, V) and their stable hybrid derivative (H). Since H morphotypes are heterotic for growth and fruit production, we hypothesized that they would produce larger flowers with more gametes. We also anticipated that plants with long styles (long morphs) would produce less pollen than short morphs, since long-morph pollen is larger. Methodology. Over two consecutive summers, flowers were collected from 1465 individual plants in 28 field populations. Floral parameters were measured digitally, and each flower’s pollen number, ovule number, and stigma-anther separation was quantified under a dissecting microscope. Gamete production (n = 332) and stigma-anther separation (n = 119) were also quantified for plants from a greenhouse accession. Pivotal results. Floral display differed among morphotypes, with H plants producing the largest flowers and C plants displaying the least petal separation. Hybrid morphotypes produced significantly more pollen than parental morphotypes, and pollen quantity was significantly greater for long morphs. Ovule production, however, was greatest for V flowers. Stigma-anther separation differed between years and style morphs (greater for short morphs) but not among morphotypes or within a single season. Conclusions. Differences in pollen production between morphs were not consistent with trade-offs in pollen size and number or selection for increased male function in short morphs. Greater stigma-anther separation in short morphs supported the hypothesis of selection to reduce pollen interference. Enhanced floral display and pollen production followed other heterotic traits observed in H morphotypes. The superior ability of H morphotypes to attract pollinators and sire seeds might partially explain this hybrid zone’s continuing expansion

    Photonic Clusters

    Full text link
    We show through rigorous calculations that dielectric microspheres can be organized by an incident electromagnetic plane wave into stable cluster configurations, which we call photonic molecules. The long-range optical binding force arises from multiple scattering between the spheres. A photonic molecule can exhibit a multiplicity of distinct geometries, including quasicrystal-like configurations, with exotic dynamics. Linear stability analysis and dynamical simulations show that the equilibrium configurations can correspond with either stable or a type of quasi-stable states exhibiting periodic particle motion in the presence of frictional dissipation.Comment: 4 pages, 3 figure

    Weak Coupling Among Barrier Loci and Waves of Neutral and Adaptive Introgression Across an Expanding Hybrid Zone

    Get PDF
    Hybridization can serve as an evolutionary stimulus, but we have little understanding of introgression at early stages of hybrid zone formation. We analyze reproductive isolation and introgression between a range-limited and a widespread species. Reproductive barriers are estimated based on differences in flowering time, ecogeographic distributions, and seed set from crosses. We find an asymmetrical mating barrier due to cytonuclear incompatibility that is consistent with observed clusters of coincident and concordant tension zone clines (barrier loci) for mtDNA haplotypes and nuclear SNPs. These groups of concordant clines are spread across the hybrid zone, resulting in weak coupling among barrier loci and extensive introgression. Neutral clines had nearly equal introgression into both species’ ranges, whereas putative cases of adaptive introgression had exceptionally wide clines with centers shifted toward one species. Analyses of cline shape indicate that secondary contact was initiated within the last 800 generations with the per-generation dispersal between 200 and 400 m, and provide some of the first estimates of the strength of selection required to account for observed levels of adaptive introgression. The weak species boundary between these species appears to be in early stages of dissolution, and ultimately will precipitate genetic swamping of the range-limited species

    Small Unmanned Aerial Vehicles (Micro-UAVs, Drones) in Plant Ecology

    Get PDF
    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology

    17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex.

    Get PDF
    In genetically heterogeneous mice produced by the CByB6F1 x C3D2F1 cross, the non-feminizing estrogen, 17-α-estradiol (17aE2), extended median male lifespan by 19% (p \u3c 0.0001, log-rank test) and 11% (p = 0.007) when fed at 14.4 ppm starting at 16 and 20 months, respectively. 90th percentile lifespans were extended 7% (p = 0.004, Wang-Allison test) and 5% (p = 0.17). Body weights were reduced about 20% after starting the 17aE2 diets. Four other interventions were tested in males and females: nicotinamide riboside, candesartan cilexetil, geranylgeranylacetone, and MIF098. Despite some data suggesting that nicotinamide riboside would be effective, neither it nor the other three increased lifespans significantly at the doses tested. The 17aE2 results confirm and extend our original reports, with very similar results when started at 16 months compared with mice started at 10 months of age in a prior study. The consistently large lifespan benefit in males, even when treatment is started late in life, may provide information on sex-specific aspects of aging

    Range Expansion Drives Dispersal Evolution In An Equatorial Three-Species Symbiosis

    Get PDF
    A-09-14International audienceBackground Recurrent climatic oscillations have produced dramatic changes in species distributions. This process has been proposed to be a major evolutionary force, shaping many life history traits of species, and to govern global patterns of biodiversity at different scales. During range expansions selection may favor the evolution of higher dispersal, and symbiotic interactions may be affected. It has been argued that a weakness of climate fluctuation-driven range dynamics at equatorial latitudes has facilitated the persistence there of more specialized species and interactions. However, how much the biology and ecology of species is changed by range dynamics has seldom been investigated, particularly in equatorial regions. Methodology/Principal Findings We studied a three-species symbiosis endemic to coastal equatorial rainforests in Cameroon, where the impact of range dynamics is supposed to be limited, comprised of two species-specific obligate mutualists –an ant-plant and its protective ant– and a species-specific ant parasite of this mutualism. We combined analyses of within-species genetic diversity and of phenotypic variation in a transect at the southern range limit of this ant-plant system. All three species present congruent genetic signatures of recent gradual southward expansion, a result compatible with available regional paleoclimatic data. As predicted, this expansion has been accompanied by the evolution of more dispersive traits in the two ant species. In contrast, we detected no evidence of change in lifetime reproductive strategy in the tree, nor in its investment in food resources provided to its symbiotic ants. Conclusions/Significance Despite the decreasing investment in protective workers and the increasing investment in dispersing females by both the mutualistic and the parasitic ant species, there was no evidence of destabilization of the symbiosis at the colonization front. To our knowledge, we provide here the first evidence at equatorial latitudes that biological traits associated with dispersal are affected by the range expansion dynamics of a set of interacting species

    Alpine Crossroads or Origin of Genetic Diversity? Comparative Phylogeography of Two Sympatric Microgastropod Species

    Get PDF
    The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa – Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826) (Gastropoda, Eupulmonata, Carychiidae) – by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (re)colonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant ‘hot-spot’ for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic) transport could mislead the interpretation of observed phylogeographical patterns in general
    corecore