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Hybridization can serve as an evolutionary stimulus, butwe have little understanding of introgression at early stages of hybrid zone

formation. We analyze reproductive isolation and introgression between a range-limited and a widespread species. Reproductive

barriers are estimated based on differences in flowering time, ecogeographic distributions, and seed set from crosses. We find

an asymmetrical mating barrier due to cytonuclear incompatibility that is consistent with observed clusters of coincident and

concordant tension zone clines (barrier loci) for mtDNA haplotypes and nuclear SNPs. These groups of concordant clines are spread

across the hybrid zone, resulting in weak coupling among barrier loci and extensive introgression. Neutral clines had nearly equal

introgression into both species’ ranges, whereas putative cases of adaptive introgression had exceptionally wide clineswith centers

shifted toward one species. Analyses of cline shape indicate that secondary contact was initiated within the last 800 generations

with the per-generation dispersal between 200 and 400 m, and provide some of the first estimates of the strength of selection

required to account for observed levels of adaptive introgression. The weak species boundary between these species appears to

be in early stages of dissolution, and ultimately will precipitate genetic swamping of the range-limited species.

KEY WORDS: Adaptive introgression, coupling of barrier loci, cytonuclear incompatibility, peripatric speciation, Ranunculus,

reproductive isolation, tension zone.

The potential for hybridization to contribute to adaptation and di-

versification has been recognized since the early 1900s (Lotsy

1916; Anderson 1949; Abbott et al. 2013; Gompert et al. 2017),

and it is becoming increasingly apparent that introgression during

divergence has affected the evolution of a wide range of species

(Payseur and Rieseberg 2016). The potential for interspecific ge-

netic exchange occurs as diverging lineages come into contact

following a period of isolation. Depending on the strength of

reproductive isolation, there are a number of possible outcomes

from secondary contact, including a complete melding of the two

lineages at one extreme, or the maintenance of sharp clines and

little or no introgression at the other (Arnold 1997; Abbott et al.

2016; Payseur and Rieseberg 2016; Butlin and Smadja 2018).

Sharp clines can be maintained as “tension zones” when there is

selection against hybrids (Key 1968; Moore 1977; Barton 1979;

Barton and Hewitt 1985), and these regions of ongoing hybridiza-

tion can persist over long periods of time (Szymura and Bar-

ton 1986; Harrison 1990; Rieseberg et al. 1999). Within hybrid

zones, independent genomic regions may display heterogeneous

cline shapes and degrees of introgression that may depend on

neutral processes or the effects of selection (Payseur et al. 2004;

Fitzpatrick 2013; Abbott et al. 2016; Gompert et al. 2017). The

highest rates of introgression are expected for genomic regions

under positive selection in the range of one species (Anderson

and Stebbins 1954; Barton 2001; Fitzpatrick et al. 2010; Hedrick

2013; Suarez-Gonzalez et al. 2018), but these events are difficult

to detect because the large majority of hybrid zones appear to be

relatively old, such that any adaptive alleles have already attained

high frequency in the ranges of both species (Arnold 1997; Ab-

bott et al. 2016; Payseur and Rieseberg 2016). Analyses of recent

1
© 2021 The Authors. Evolution published by Wiley Periodicals LLC on behalf of The Society for the Study of Evolution.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided
the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Evolution

https://orcid.org/0000-0001-5419-2798
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fevo.14381&domain=pdf&date_stamp=2021-10-29


M. B. CRUZAN ET AL.

Figure 1. Three scenarios for changes in cline width and center following secondary contact. Sharp clines characteristic of tension zones

are predicted if there is selection against hybrids due to underdominance or epistasis between interspecific genomic elements. In the

absence of selection, neutral introgression will result in wider clines and cline centers will remain close to region of secondary contact.

Adaptive introgression into one species is predicted to result in wide clines and displacement of the cline center. In each figure, the

horizontal axis is geographic distance and the vertical axis is marker frequency.

secondary contact are much less common (e.g., Fitzpatrick et al.

2010; Lamer et al. 2015; Lehnert et al. 2018), and our under-

standing of the dynamics of genetic exchange during early stages

of secondary contact is incomplete.

Analyses of clines separating divergent lineages have been

conducted primarily under the assumption that their character-

istics reflect equilibrium conditions (Barton and Hewitt 1985;

Arnold 1997; Abbott et al. 2016; Payseur and Rieseberg 2016),

but this assumption may not apply during early stages of hy-

brid zone formation. After initial secondary contact, all loci with

strong allele frequency differences between lineages will display

sharp step-clines (Fig. 1), but depending on rates of dispersal and

the effects of selection, clines are likely to become wider over

time (Barton and Hewitt 1985; Fitzpatrick 2013). In the absence

of selection, cline centers will remain close to the region of initial

contact, whereas the cline becomes wider as introgression pro-

gresses into the ranges of both lineages at a rate that is dependent

on dispersal (Fisher 1937; Piálek and Barton 1997). Alternatively,

the rate of introgression can be accelerated if an allele from one

lineage is subject to positive selection in the genomic background

of the second lineage (Fisher 1937; Barton 2001). In this case,

we expect that introgression will be unidirectional, and the cline

will shift away from the point of secondary contact at a velocity

that depends on the rate of dispersal and the strength of selection

(Fisher 1937; Kolmogorov et al. 1937; Fig. 1). Under equilib-

rium conditions, adaptive introgression is expected to occur as

an advancing wave where the width of the cline stays constant.

The third possible outcome is expected in cases where interspe-

cific allelic combinations have lower fitness due to underdomi-

nance or epistasis (Barton and Hewitt 1985; Abbott et al. 2016).

Under these conditions, a tension zone forms as the widening of

the cline ceases and a balance between the per-generation disper-

sal rate and the strength of selection is achieved (Fig. 1). When

equilibrium conditions are attained, cline width will be propor-

tional to the strength of selection acting against specific genetic

combinations at each genomic region (Barton and Gale 1993).

The scenarios described above assume that population den-

sity and fitness of both lineages are equivalent, and that mating

barriers between them are equal. Under these conditions, neutral

clines will expand symmetrically, and the centers of tension zone

clines are expected to coincide (Barton and Gale 1993; Abbott

et al. 2016). When mating barriers, dispersal rates, or fitness are

not equivalent, cline centers are expected to shift position away

from the original location of secondary contact. Hybrid zone

movement appears to be common and may occur for a variety

of reasons (Cruzan 2005; Buggs 2007; Lehnert et al. 2018; van

Riemsdijk et al. 2019; Wielstra 2019). For example, higher rates

of dispersal for one lineage will shift cline centers toward the lin-

eage with more limited dispersal (Barton and Hewitt 1985). With

equal rates of dispersal, gene flow will be more prevalent toward

the lineage with lower fitness due to higher numbers of emigrat-

ing individuals and spores (seeds and pollen in plants) from the

high-fitness lineage, resulting in a shift in all of the cline centers

(the entire hybrid zone) and genetic swamping of the low-fitness

lineage (van Riemsdijk et al. 2019). Asymmetrical mating bar-

riers have a similar effect as cline centers are expected to shift

toward the lineage with weaker reproductive isolation (Payseur

et al. 2004). As the hybrid zone moves, the centers of tension

zone clines become staggered and spread out, and the direction

of introgression toward one lineage is evident as higher levels of
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INTROGRESSION ACROSS AN EXPANDING HYBRID ZONE

linkage disequilibria at the leading edge of hybrid zone move-

ment (Barton and Gale 1993; Cruzan 2005; van Riemsdijk et al.

2019).

An appreciation of the processes contributing to the stabil-

ity or movement of clines and the potential for hybrid zones to

prevent introgression between divergent lineages depends on an

evaluation of parental lineage and hybrid fitness, and the strength

of reproductive barriers (e.g., Dasmahapatra et al. 2002; Pay-

seur et al. 2004; Cruzan 2005; Buggs 2007; Wellenreuther et al.

2018). Isolation is most effective when lineages are ecologi-

cally and geographically separated (Ramsey et al. 2003; Christie

and Strauss 2018; Cruzan 2018). When lineages are in close

contact, post-mating mechanisms, such as genetic incompati-

bility (i.e., Bateson-Dobzhansky-Muller [BDM] incompatibili-

ties; Orr 1996), can present strong barriers (Hendry et al. 2007;

Baack et al. 2015; Christie and Strauss 2018). In particular,

BDM incompatibilities occurring between nuclear and organelle

genomes (cytonuclear incompatibilities) generate asymmetrical

mating barriers, and have been observed to arise early during di-

vergence (Levin 2003; Greiner et al. 2011; Burton et al. 2013;

Barnard-Kubow et al. 2016). The effectiveness of BDM incom-

patibilities (barrier loci) to maintain hybrid zones that limit intro-

gression depends on their number and geographic coincidence of

their clines (Barton 1983; Ravinet et al. 2017; Butlin and Smadja

2018). With larger numbers of barrier loci, clines that are strongly

coincident (having the same center) and concordant (having the

same shape), there is a “coupling effect” that is thought to gener-

ate a strong barrier preventing neutral introgression and slowing

the progress of adaptive introgression between hybridizing lin-

eages. Conversely, the barrier would be weaker with fewer barrier

loci and low coincidence, resulting in extensive introgression and

eventually the dissolution of the hybrid zone.

In this study, we examine the strength of reproductive isola-

tion and evaluate nuclear, cytoplasmic, and phenotypic trait clines

associated with a hybrid zone between the range-limited species,

Ranunculus austro-oreganus L.D. Benson (Southern Oregon but-

tercup), and its widespread congener, R. occidentalis Nutt. (West-

ern buttercup; Ranunculaceae). These two species appear to be

interbreeding in a region where their ranges come into contact,

in a narrow hybrid zone in the Rogue River Valley of southern

Oregon. Ranunculus occidentalis occurs across an extensive re-

gion, stretching from southern California to Alaska, whereas R.

austro-oreganus occupies a small area in Jackson County and is

a candidate threatened species (Kagan et al. 2016). We first as-

sess the strength of reproductive isolation between these species

using niche modeling, evaluation of flowering times, and seed

set from greenhouse crosses to test the strength and symmetry

of mating barriers. We then conduct a SNP survey to identify

the loci displaying the strongest allele frequency differences, and

evaluate their cline characteristics across the region of secondary

contact using geographic and genomic cline approaches (Gom-

pert et al. 2017). We identify a range of nuclear and cytoplasmic

clines that display large differences in their widths and displace-

ment from the hybrid zone center. Analyses of cline width and

displacement indicate that secondary contact was initiated only

recently, and clines representing ongoing neutral and adaptive in-

trogression are present.

Methods
MORPHOLOGICAL DIFFERENTIATION

Ranunculus austro-oreganus and R. occidentalis display differ-

ences in their ventral petal color and in the density of leaf tri-

chomes. We quantified these two morphological traits for plants

across populations to characterize their geographic distribution

across the hybrid zone. Putative hybrid populations were iden-

tified by the presence of plants representing both petal color

morphs. Three petals from three separate flowers and two leaves

(one basal and one cauline) were collected in the field from each

plant in two flowering seasons. Petals and leaves were collected

from 32 populations (eight R. austro-oreganus, 11 R. occiden-

talis, and 13 putative hybrids) in 2017 and 2019 (Fig. S1).

Morphological characters were quantified using a Leica

MZ16 stereomicroscope and ImageJ software (version 1.52c).

Ventral petal color was quantified for 532 individuals by cap-

turing images at 40× magnification. ImageJ was used to con-

vert each petal image to 8-bit gray scale using weighted RGB

conversions to maintain luminosity (Rx0.30, Gx0.59, Bx0.11),

where the yellow color is then perceived as lightness (high gray

value) and the red/brown character is darkness (low gray value).

A 500px2 selection was made over the center of the image and the

ImageJ measurement tool was used to capture the mean grayscale

value of the selection, where every pixel had a value from 0 to

255, black to white. Variation in leaf hair coverage was quanti-

fied in the same manner as petals, for one basal and one cauline

leaf from 28 populations, resulting in 1184 leaf samples. Leaf and

petal data were analyzed using linear models with SAS (2007) to

test for differences between the two species and the putative hy-

brid populations. Residuals from these models displayed approx-

imately normal distributions.

GREENHOUSE CROSSES

Seeds were collected from three R. occidentalis and three R.

austro-oreganus populations that appeared to lack hybrid indi-

viduals and were well displaced from the apparent region of sec-

ondary contact. Seeds were cold-stratified in moist seedling pot-

ting mix (2°C) for 6 weeks. Germinated seedlings were grown

for 2 months and were vernalized by half burying pots in soil out-

side before transfer into the greenhouse. We emasculated newly
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opened flowers with indehiscent anthers and hand-pollinated

emasculated flowers when stigmas became receptive (3 days af-

ter emasculation). Pollinations were made with dehisced anthers

from flowers on the same plant (selfing), from different pop-

ulations of the same species (intraspecific outcross), or from

populations of the other species (interspecific crosses). In total,

we performed 29 interspecific crosses, 31 intraspecific crosses,

and 19 self-pollinations with R. austro-oreganus as the seed

parent, and 23 interspecific, 17 intraspecific crosses, and nine

self-pollinations with R. occidentalis as the seed parent. We made

final seed collections approximately 4 weeks after the emascula-

tion date when filled seeds first appeared light brown.

Seeds were examined using light microscopy and charac-

terized as filled, aborted, or unfertilized based on their color

and size. Filled seeds were opaque and brown, often with spots;

aborted seeds were small to large, green, and translucent; and

unfertilized seeds were very small, yellow, and undeveloped. The

data displayed high frequencies of zeros so we assumed a Poisson

distribution to compare cross treatments with maternal collection

site entered as a random variable and total number of ovules plus

seeds entered as a covariate in a general linear model using the

GENMOD procedure of SAS (SAS 2007).

The filled seeds from intra-, inter-, and self-crosses were

cold-stratified, and germination success was measured over a

3-week period from when they were first removed from cold

stratification. Germination success was compared among cross

treatments in a general linear model in SAS (SAS 2007) where

maternal site was specified as a random effect and the total num-

ber of seeds planted was considered a covariate. Individual plants

were assessed for the presence/absence of flower production. We

analyzed flowering data across treatment types using categorical

models in the CATMOD procedure of SAS (SAS 2007).

SEED SET UNDER FIELD CONDITIONS

To assess levels of seed set under field conditions, we collected

fruiting heads (clusters of achenes) from three R. occidentalis,

five R. austro-oreganus, and two putative hybrid populations. In

each population, up to three achene clusters from a maximum of

20 individuals were collected for a total of 146 seed clusters from

60 plants of R. occidentalis, 358 clusters from 164 plants of R.

austro-oreganus, and 59 clusters from 26 putative hybrid plants.

Seed cluster constituents were sorted as filled, aborted, or un-

fertilized achenes using a stereomicroscope as described above.

Data were analyzed to test for seed set (filled achenes) differ-

ences among populations identified as hybrid or as one of the two

species assuming a negative binomial distribution. We compared

the number of seeds per flower between species with population

site as a random variable in a general linear mixed model using

the lme4 R package (version 3.6.0). The model included number

of achenes per flower as a covariate as it was inconsistent among

individuals.

REPRODUCTIVE ISOLATION

We followed the methods of Ramsey et al. (2003) to calculate

the absolute contribution (AC) of each component and total re-

productive isolation (T) between R. occidentalis and R. austro-

oreganus. The combined effects of ecogeographic and ecological

isolation were determined from ENM analyses (Appendix S1),

and the contribution to reproductive isolation (RI) was calculated

as ACEcoGeo = 1 – (co-occurrences)/(total). To estimate isolation

due to differences in flowering time between species, we used

the collection dates of herbarium records (Appendix S1) with Ju-

lian Day corrected by elevation, year sampled, whether the record

was an observation or a collection, and latitude. Corrected Julian

Days were ranked in ascending order for both species combined

and reproductive isolation was calculated as ACFlower = 1 – (days

co-flowering)/(total days). Total days was the earliest to the lat-

est day when either species was flowering, and days co-flowering

was the first to the last day when both species were predicted to

flower together.

Reproductive isolation components for seed set, seed germi-

nation, and offspring flowering were calculated based on both the

combined data and data with each species separately acting as the

seed parent to identify components contributing to asymmetri-

cal isolation. For all three components, interspecific crosses were

compared to crosses between populations of the same species

(intraspecific) to control for the effects of drift load (Rhode and

Cruzan 2005; Charlesworth and Willis 2009). Reproductive iso-

lation at the seed set stage was calculated from the mean seeds

per flower after inter- and intraspecific crosses as ACSeeds =
1 – (mean interspecific seed number)/(mean intraspecific seed

number). For seed germination, we used mean proportion of

seeds germinating as ACGerm = 1 – (mean interspecific germina-

tion)/(mean intraspecific germination). All seedlings were scored

as either 0 for the plants that did not flower because they did not

survive or were not observed to flower or 1 for the plants that

survived and flowered before the end of the season. These scores

were used to calculate average flowering frequency as ACFlowering

= 1 – (interspecific flowering)/(intraspecific flowering). The total

reproductive isolation for the combined data and for each species

was calculated as T = �ACi, and the relative contribution of each

stage as RCi = ACi/T.

GENETIC SAMPLING

Leaf tissue was collected from eight individuals in each of 48

populations from R. austro-oreganus, R. occidentalis, and their

putative hybrids through the 2015–2018 field seasons (Table S1).

All plant materials were stored in coin envelopes and were dried

and kept in silica gel until DNA extraction. Total genomic DNA
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was extracted following the Qiagen DNeasy 96 Plant Kit pro-

tocol (Qiagen, Germantown, MD). Isolated DNA was quantified

using a Qubit 4 fluorometer (Invitrogen, ThermoFisher Scientific,

Waltham, MA). Individuals with a DNA concentration greater

than 20 ng/μL were prioritized and selected for Genotyping-by-

Sequencing (GBS; Elshire et al. 2011). Samples were sent to the

Biotechnology Center at University of Wisconsin-Madison for

enzyme optimization, library construction, and sequencing. Raw

sequences were processed and SNPs were identified and filtered

for quality following the protocol specified by the GBS-SNP-

CROP pipeline (Melo et al. 2016; Appendix S2). Once filtered,

a subset of 2196 SNPs remained and were used in subsequent

analyses.

IDENTIFICATION OF OUTLIER LOCI

Loci displaying strong allele frequency differences between pop-

ulations of each species due to selection or drift can be used for

analyses of clines (Nosil et al. 2009; Gompert and Buerkle 2011;

Stankowski et al. 2017), and for assessing patterns of introgres-

sion when rates of gene flow are high (Guichoux et al. 2013). Al-

though FST is often used to identify outlier loci (Beaumont 2005),

this approach does not work well when loci are nearly homozy-

gous in allopatric populations (Harrison and Larson 2016), so we

identified outlier loci based on the absolute differences in allele

frequencies (Larson et al. 2014). Outlier loci in this study were

identified as SNPs displaying the largest allelic frequency differ-

ences (>0.3) between the two populations of each species having

the lowest variance in ventral petal color (Fig. S2). These crite-

ria identified a total of 61 outlier SNPs out of the original 2196

detected.

GEOGRAPHIC CLINE ANALYSIS

We estimated cline centers and widths to evaluate the extent of

admixture and patterns of introgression across the region of hy-

bridization using a maximum likelihood approach for both of the

morphological traits and each of the 61 outlier SNP loci. The

position of populations along a latitudinal line is based on the

position of a geographic marker placed ∼50 m west of the west-

most population. Cline models were estimated with the R pack-

age HZAR (Derryberry et al. 2014) for both the phenotypic traits

(ventral petal color and leaf trichome density) and allele frequen-

cies at each of the outlier loci. A null model, which tests the

hypothesis that there is no cline in the sampled region, along

with 15 alternative cline models was analyzed for each locus

or trait. Models differ based on combinations of trait frequency

[pMin, pMax] (fixed to 0 and 1; observed values; estimated val-

ues) and combinations of fitting cline tails (none fitted; left only;

right only; mirror tails; both tails estimated separately; Derry-

berry et al., 2014). Each model was run on a separate seed and

with an MCMC length set to 100,000 with a burn-in of 10,000.

All cline models were checked for convergence and the model

with the lowest AIC score was selected to extract summary statis-

tics and the maximum-likelihood clines for each variant. Based

on the criteria described above, cline centers and widths were

used to classify each marker as fitting a neutral (low displace-

ment from the hybrid zone center and introgression toward both

species’ ranges), adaptive (high displacement and introgression

in one direction), or tension zone model (low displacement and

narrow cline width; Fig. 1).

GENOMIC CLINE ANALYSIS

Genomic clines for the 50 SNP loci that had significant fits to

one of the cline models in HZAR (see below) were analyzed us-

ing Bayesian estimation of genomic clines (bgc; Gompert and

Buerkle 2012) and ClinePlotR (Martin et al. 2020). All popu-

lations were aggregated into three categories: Ranunculus occi-

dentalis and R. austro-oreganus parental samples (pooling two

populations of each species with the lowest variance in ventral

petal color; Fig. S2) and admixed samples. Five runs were com-

pleted with 170,000 MCMC steps and a burn-in period of 70,000

samples. In each run, data were thinned by recording every 10th

sample. Because the loci were identified using next-generation

sequencing, the genotype-uncertainty model was used in con-

junction with a sequence error probability of 0.0001. Cline pa-

rameters α and β were calculated.

Estpost software (http://repec.sowi.unibe.ch/stata/estout/)

was used to summarize the results from each run, and runs

were checked for convergence using the plot_traces function in

ClinePlotR. Outlier loci were identified with the get_bgc_outliers

function using the overlap.zero method, which identifies loci with

cline parameters that exclude zero for α, β, or both parameters. If

a locus was identified as an outlier, the direction of displacement

(positive or negative) was found through comparison to the lin-

ear model for the relationship between the hybrid index and the

ancestry coefficient (�).

LINKAGE DISEQUILIBRIA AMONG OUTLIER LOCI

Levels of linkage (gametic) disequilibria (D) provide evidence of

recent gene flow and can be used to infer the direction of hy-

brid zone movement (Barton and Gale 1993; Cruzan 2005; van

Riemsdijk et al. 2019). We used methods to estimate the average

level of disequilibria (D̄) developed by Barton and Gale (1993),

which is based on the variance in the hybrid index (H) among

individuals within populations (VH). This approach assumes that

VH is due to variance in allele frequencies across n loci, and is

inflated if alleles at different loci are in disequilibria with each

EVOLUTION 2021 5
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other. The average disequilibrium in each population can be cal-

culated as

D̄ = 1/2n
(
H̄

(
1 − H̄

)) − Vp

0.5 (1 − (1/n))
,

where H̄ is the mean hybrid index and Vp is the variance in

allele frequencies for each population, calculated as 1/n�(pi – p̄)

across n loci (Barton and Gale 1993). We estimated the hybrid

index (H) for each individual based on the 50 FST outlier loci

found to have significant clines (see below) using the R pack-

age introgress (Gompert and Buerkle 2010). Standard deviations

for D̄ and tests for significant differences from zero within each

population were estimated using 100 bootstrap replicates with re-

placement.

We evaluated whether different groups of SNPs were tend-

ing toward introgression together into the range of each species

by examining patterns of disequilibria among the 50 outlier loci.

We pooled individuals from the five populations with the highest

estimates of D̄ for each species and tallied instances of significant

pairwise disequilibria (P < 0.05) with Arlequin (Excoffier and

Lischer 2010) using 10,000 permutations with haplotype phase

unknown. Separate tallies were made for significant estimates of

disequilibria among SNPs with clines displaced toward the range

of R. austro-oreganus, R. occidentalis, or both.

Results
MORPHOLOGICAL VARIATION

We found strong differences between the two Ranunculus species

and the hybrid populations for both ventral petal color and leaf

trichome density. Ventral petals of R. austro-oreganus were much

darker compared to R. occidentalis, and hybrids were intermedi-

ate (F2/25 = 61.36, P < 0.0001 tested over maternal site; Fig. 2A).

Leaves of R. austro-oreganus were much brighter than R. oc-

cidentalis, and the hybrids were intermediate between the two

species (F2/25 = 5.03, P = 0.0146 tested over maternal site;

Fig. 2B). There were significant differences among sampling lo-

cations for petals (F25/501 = 14.79, P < 0.001) and leaf hair

gray values (F25/28 = 21.52, P < 0.001), but the difference for

gray value between basal and cauline leaves was not significant

(F28/1005 = 0.78, P = 0.793). There was a significant correspon-

dence between the mean ventral petal color and the variance in

color, with populations having intermediate means displaying the

highest variance in color (Fig. S2; quadratic model adjusted R2 =
0.66, F2/27 = 29.2, P < 0.0001).

GREENHOUSE CROSSES

Significant differences were found in the number of filled seeds

among the types of crosses (x2
5 = 88.84, P < 0.001) and the ma-

ternal sampling location nested within cross type (x2
11 = 136.17,

Figure 2. Morphological differentiation measured in the average

gray values for petal color (A) and trichome density (B) in Ranun-

culus austro-oreganus, R. occidentalis, and their putative hybrids.

P < 0.001). The covariate of total number of ovules was also

significant (x2
1 = 9.89, P = 0.002). For each type of cross (inter-

specific, intraspecific, and self), R. occidentalis had significantly

higher seed set than R. austro-oreganus (Table 1). Ranunculus

occidentalis intraspecific crosses also had a significantly higher

seed set than their self-pollinations (Table 1).

From the 617 seeds planted, 353 germinated. Germination

success was not significantly different between types of crosses,

although there appeared to be a trend toward a treatment effect

(F5/70 = 2.27, P = 0.0568); the contrasts revealed R. occidentalis

self-pollinations had significantly lower germination rates than

the intraspecific crosses in this species, and all other contrasts

were not significant (Table 1). The maternal sampling location

nested within treatments did not have a significant effect on ger-

mination (F11/70 = 1.36, P = 0.2109), whereas the covariate of

total number of seeds planted was significant (F1/70 = 123.25,

P < 0.001).
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Table 1. Numbers of seeds produced, seeds germinated, and seedlings surviving to flowering after self, intraspecific (outcrossing be-

tween populations), and interspecific pollinations in Ranunculus occidentalis (Ranocc) and R. austro-oreganus (Ranaus). Model effects

for each analysis included treatment (species/pollination treatment combined) and maternal site (not included in the categorical model

for flowering). For each analysis, contrast statements were used to compare self versus intraspecific and intraspecific versus interspe-

cific pollinations within each species. Between species comparisons included self, intraspecific, and interspecific pollinations. Significant

probabilities are in bold.

Seeds Germination Flowering

DF χ2 Prob. DF F Prob. DF χ2 Prob

Treatment 5 88.84 <0.0001 5 2.27 0.0568 5 12.17 0.0325
Maternal site 11 136.17 <0.0001 11 1.36 0.2109
total 1 9.89 0.0017 1 123.25 <0.0001

Ranocc Self vs. Intra 1 4.50 0.0338 1 11.13 0.0014 1 0.80 0.3717
Intra vs. Inter 1 0.01 0.9183 1 1.30 0.2582 1 0.33 0.5652

Ranaus Self vs. Intra 1 0.09 0.7658 1 0.02 0.8755
Intra vs. Inter 1 0.03 0.8716 1 0.02 0.8823 1 10.07 0.0015

Ranocc vs. Ranaus Self 1 11.74 0.0006 1 3.49 0.0659
Intra 1 37.01 <0.0001 1 1.34 0.2513 1 2.74 0.098
Inter 1 36.27 <0.0001 1 0.07 0.791 1 5.85 0.0156

Of the 353 germinated seeds, 232 grew to adult size. We

found significant differences between crosses on flowering suc-

cess (x2 = 12.17, P = 0.0325). This was driven largely by

seedlings from interspecific crosses to R. austro-oreganus as the

seed parent having a lower flowering frequency, as compared

to intraspecific seedlings in the same species, and interspecific

seedlings from R. occidentalis as the seed parent, which both had

higher flowering frequencies (Tables 1 and S2).

SEED SET UNDER FIELD CONDITIONS

Levels of seed set and ovule abortion under field conditions were

similar to the pattern found between species in the greenhouse.

Seed set was highest in R. occidentalis (4.72) followed by pu-

tative hybrid and R. austro-oreganus populations (4.44 and 4.02,

respectively; P > 0.05 for all comparisons). Embryo abortion was

highest in R. austro-oreganus populations (9.07 seeds) followed

by putative hybrid and R. occidentalis (7.67 and 4.96, respec-

tively; P = 0.004 for the contrast between R. austro-oreganus

and R. occidentalis; P > 0.05 for both contrasts with plants in

putative hybrid populations).

REPRODUCTIVE ISOLATION

Reproductive isolation between these species of Ranunculus ap-

pears to be fairly strong overall, but this is mostly due to eco-

logical niche models, which predicted large geographic regions

to be suitable habitat for only R. occidentalis (Table S2). In con-

trast, there was only a few small regions that were predicted to

be suitable exclusively for R. austro-oreganus. The contribution

of flowering time to isolation, on the other hand, was small and

was driven by the flowering period of R. occidentalis being ex-

tended by about 20 days compared to R. austro-oreganus. Fecun-

dity (seed set), seed germination, and the flowering frequencies

of each offspring group did not contribute much to overall iso-

lation, but seed set and flowering frequencies presented strong

barriers for introgression into R. austro-oreganus, and generated

asymmetrical isolation when each species was considered sep-

arately (Table S2). Postzygotic barriers for R. austro-oreganus

as the maternal parent were primarily due to low seed set and

flowering frequencies for offspring from interspecific crosses. In

contrast, for interspecific crosses to R. occidentalis as the ma-

ternal parent, seed and flowering frequencies were higher than

for intraspecific crosses (Table S2). The low negative value of

reproductive isolation for R. occidentalis indicates that pollen-

mediated introgression from R. austro-oreganus is strongly fa-

vored when these two species are in sympatry.

GENETIC DIFFERENTIATION AND CLINE

CLASSIFICATION

Results from the intraspecific crosses and reproductive barrier

analyses provide opposite predictions for the direction of intro-

gression across the hybrid zone. On the one hand, the lower av-

erage seed set observed in the greenhouse and in the field for

R. austro-oreganus would generate a fitness disadvantage result-

ing in higher rates of introgression into its range (Buggs 2007;

van Riemsdijk et al. 2019). On the other hand, strong asymmet-

rical mating barriers are expected to favor introgression from R.

austro-oreganus into the range of R. occidentalis (Crochet et al.

2003; Devitt et al. 2011; Johnson et al. 2015). We further ex-

pect that clines representing different genomic regions may dis-

play heterogenous shapes and degrees of displacement from the
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original region of secondary contact, which will depend on the

strength of selection, dispersal rates, and interactions among ge-

nomic regions (Hu and Li 2002; Johnson et al. 2015).

Structure analysis (Pritchard et al. 2000) indicates that ge-

netic differentiation among populations and species based on all

2196 SNPs was relatively weak (Fig. S4), but stronger differences

in allele frequencies between two species were found for the 50

outlier loci displaying significant clines (Fig. S5). Eight of these

SNPs displayed strong departures from Hardy-Weinberg equi-

librium due to a complete lack of observed heterozygotes (blue

boxes in Fig. S5). By comparing the genomic region surround-

ing these SNPs (based on the mock reference genome), we were

able to determine that five of them had strong sequence similarity

(89.53–100%) to plant mitochondrial genomes (Table S3). One

group of four SNPs and one group of two displayed strong corre-

lations in frequencies among populations (r ≥ 0.99), but weak

correlations with other SNPs (r < 0.6), and were assumed to

represent two haplotypes (shaded blue and green, respectively,

in Fig. S5 and Table S4). Based on the lack of observed het-

erozygotes and patterns of correlations, these eight SNPs were

assumed to represent four different cytoplasmic haplotypes.

Clines for the 42 nuclear SNPs and four cytoplasmic haplo-

types displayed a wide range of variation in cline centers and

widths (Figs. 3 and S5; Table S4). Nine of the clines ranged

in width between 30,000 m and close to 140,000 m, with large

displacements from the hybrid zone center (see below) that

were proportional to their widths (i.e., displacement/width ratios

ranged from 0.17 to 0.39; Fig. 3B). Six of these nine clines had

centers displaced toward R. austro-oreganus, and three had cen-

ters displaced toward R. occidentalis (including one cytoplasmic

haplotype; Fig. S5). Given the extreme widths and patterns of dis-

placement toward one species or the other, these nine clines best

fit the expectations for adaptive introgression (Fig. 1).

To estimate the hybrid zone center, we excluded the nine

clines appearing to be spreading by adaptive introgression, and

took the average of the centers of the remaining clines for 37

SNP markers and haplotypes (hybrid zone center at 20,128 m;

Figs. 4 and 5). Ten of these clines (seven with centers displaced

toward R. occidentalis, and three with centers toward R. austro-

oreganus) had extremely narrow widths (<500 m) and were as-

sumed to represent tension zone clines. Two of these tension zone

clines were cytoplasmic haplotypes: one displaced in the direc-

tion of R. occidentalis and represented by four SNPs and the

other displaced in the direction of R. austro-oreganus and repre-

sented by two SNPs (Figs. 5 and S5). The centers of tension zone

clines occurred in three groups that were strongly coincidental:

one group of three (two nuclear and one cytoplasmic) displaced

toward the R. austro-oreganus range, and two groups of seven and

four (three nuclear and one cytoplamic) each displaced toward R.

occidentalis (Fig. 5). The remaining 27 clines had widths falling

Figure 3. Classification of the clines for 50 outlier SNP loci based

on the characteristics presented in Figure 1. Separate regression

analyses for the relationship between cline width and displace-

ment from the hybrid zone center (A) were conducted for clines

displaced toward the Ranunculus occidentalis allopatric region

(yellow markers and yellow dotted line) and for clines displaced

toward R. austro-oreganus (red markers and red dotted line). A

subset of the widest clines (w > 30 km) had centers displaced

from the hybrid zone proportional to their width (A and B) and

were classified as putative cases of adaptive introgression. A sec-

ond subset of clines were exceptionally narrow (w < 500 m) and

were classified as tension zones (B). Neutral introgression clines

displayed introgression into both species ranges with centers hav-

ing moderate levels of displacement from the hybrid zone center

(B).

between 700 and 30,000 m with their centers relatively close to

the hybrid zone center, and were assumed to represent neutral in-

trogression, or perhaps weak selection (Figs. 3 and S5). Twelve

of these clines (including one cytotype) had centers displaced

toward R. occidentalis, and 15 had centers displaced toward R.

austro-oreganus. For the two phenotypic traits, the ventral petal

color best fit the tension zone model, and trichome density best

fit a model of neutral introgression (Fig. 4).

GENOMIC CLINE ANALYSIS

Out of the 50 clines analyzed, 26 of them displayed levels of

R. occidentalis ancestry that were higher or lower than expected

(positive or negative α outliers, respectively), had higher or lower
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Figure 4. Cline models for two phenotypic traits across the

hybrid zone between Ranunculus occidentalis and R. austro-

oreganus. The cline for ventral petal color displays a pattern con-

sistent with a tension zone, whereas the cline for leaf trichome

density is most consistent with neutral introgression. The gray

shaded area represents the 95% confidence intervals of centers

for the neutral introgression SNP clines, and the vertical dashed

line is the hybrid zone center.

rates of introgression (negative or positive β outliers, respec-

tively), or both (Figs. S7 and S8; Table S4). Consistent with the

geographic cline analysis, 19 of the cline centers were displaced

in the direction of R. austro-oreganus, and only seven were dis-

placed in the direction of R. occidentalis. One cytoplasmic hap-

lotype represented by two clines had a lower rate of introgres-

sion indicating a sharp cline (positive β outlier) and one nuclear

cline had a higher rate of introgression (negative β outlier) and

displacement in the direction of R. austro-oreganus (Table S4;

Fig. S8).

Figure 5. Levels of average linkage (gametic) disequilibria (D̄) for

populations sampled across the hybrid zone between Ranunculus

occidentalis (yellow) and R. austro-oreganus (red). Filled markers

represent estimates that are significantly different from zero. Error

bars represent the standard deviation. The gray shaded area indi-

cates the 95% confidence intervals of centers for the neutral intro-

gression SNP clines, and the vertical dashed line is the hybrid zone

center. The blue vertical lines indicate the centers of clines clas-

sified as tension zones, with the number in each cluster that are

nuclear SNPs and cytoplasmic (in parentheses) haplotypes (each

represented bymultiple SNPs; Fig. S5). The orange vertical line rep-

resents the center of the ventral petal color cline.

LINKAGE DISEQUILIBRIA

Variation in the hybrid index (VH) exceeded the variance in allele

frequencies (Vp) across the 50 outlier loci with significant clines

for all populations (Fig. 5), and resulted in significant estimates

of average linkage disequilibria (D̄) for 24 of the 48 populations.

Fifteen of the significant disequilibria estimates were for popula-

tions within the range of R. austro-oreganus, whereas nine were

for R. occidentalis populations (Fig. 5).

There were large numbers of significant disequilibria esti-

mates among the 50 outlier loci for the two groups of popula-

tions with the highest estimates of D̄ within each species’ range

(Figs. 5 and S6). The majority of significant estimates were as-

sociated with SNP markers having clines categorized as tension

zones, and a good proportion of those were due to the SNPs repre-

senting cytoplasmic haplotypes. The highest frequencies of sig-

nificant disequilibria were for tension zone SNPs in R. austro-

oreganus populations, or for tension zone SNPs in populations

with the highest D̄ estimates for both species (Fig. S6).

CLINE ANALYSES

We analyzed the clines fitting expectations for neutral intro-

gression to obtain estimates for per-generation dispersal (δ; per-

generation dispersal) and the generations since initial secondary

contact (t) using the relationship w = 2.51δ�t for cline width
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Figure 6. The range of cline widths (w) predicted from the per-generation dispersal (δ) and the number of generations since secondary

contact (t) under neutral introgression. The blue markers and shaded area encompass the combination of values that are consistent with

observed neutral cline widths in the Ranunculus occidentalis and R. austro-oreganus hybrid zone (blue brackets on the X and Y axes).

The smaller green region and markers represent the subset of values producing reasonable estimates of s for clines displaying adaptive

introgression (green bars on the X and Y axes).

(w) under neutral introgression (Barton and Gale 1993). Some

of these clines may be weakly affected by selection, which may

limit the rate of introgression, so we chose a range of w between

10,000 and 20,000 m as representative of the seven widest neutral

clines (Table S3; Fig. 3B). Within this range, predicted values of δ

fell between 200 and 800 m per-generation and t ranged from 25

to 1600 generations (Fig. 6). These plants require vernalization

after the first season of growth, and most flower in the second

season. Assuming a generation time of 2 years, this analysis pre-

dicts that the Ranunculus hybrid zone was first formed between

50 and 3200 years in the past.

For cases of advantageous introgression, we estimated the

selective advantage of the beneficial allele (s) driving introgres-

sion using the relationship ν = δ�(2s), where δ is the per-

generation dispersal and ν is the velocity of introgression (Fisher

1937; Kolmogorov et al. 1937; Ralph and Coop 2010). We es-

timated the velocity based on the degree to which cline width

exceeded the rate of neutral introgression as ν = νA – ν̄N where

νA = wA/t and ν̄N is the average of the seven widest neutral clines

divided by generations (t). After testing the range of values for

δ and t predicted from the analysis of neutral introgression, we

found a smaller subset of values provided reasonable estimates

of s (i.e., s < 1.0) for all of the clines displaying adaptive intro-

gression (green-shaded region in Fig. 6). From values of δ be-

tween 200 and 400 m per-generation and t between 400 and 800

generations, estimates of s ranged from 0.01 to 0.31 (Table 2).

Qualitatively similar results are obtained if we do not adjust for

neutral introgression (s ranges from 0.026 to 0.381). Based on

these refined estimates of t, secondary contact between these Ra-

nunculus species was initiated between 800 and 1600 years in the

past.

Discussion
The hybrid zone separating the widespread R. occidentalis

species from the range-limited R. austro-oreganus species ap-

pears to be a rare example of recent secondary contact. With the

exception of introduced species (e.g., Rosenthal et al. 2008; Fitz-

patrick et al. 2010; Ward et al. 2012; Lamer et al. 2015; Lehnert

et al. 2018), it is difficult to identify cases where admixture has

initiated very recently. In fact, the large majority of hybrid zones

that have been characterized represent stable species boundaries

that may shift geographic position and display different degrees

of permeability to introgression (Buggs 2007; Abbott et al. 2016;

Harrison and Larson 2016; Gompert et al. 2017; McEntee et al.

2020). In the case of the Ranunculus hybrid zone, the clines
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Table 2. Estimates of selection for beneficial alleles (s) from the per-generation dispersal (δ) and thewidths of clines (w) displaying adap-

tive introgression in the region of admixture between Ranunculus occidentalis (Ranocc) and R. austro-oreganus (Ranaus). Introgression

velocities (v) were based on the number of generations since secondary contact (t), andwere adjusted for the rate of neutral introgression

(average of the seven widest neutral clines).

Cline Neutral t = 400/δ = 400 t = 600/δ = 300 t = 800/δ = 200

Species Locus w w v s v s v s

Ranocc 141124 41671.84 13776.29 69.74 0.015 46.49 0.012 34.87 0.015
Ranocc 186072 36485.87 13776.29 56.77 0.010 37.85 0.008 28.39 0.010
Ranocc 801503 83682.22 13776.29 174.76 0.095 116.51 0.075 87.38 0.095
Ranaus 237266 74044.15 13776.29 150.67 0.071 100.45 0.056 75.33 0.071
Ranaus 319835 100197.30 13776.29 216.05 0.146 144.04 0.115 108.03 0.146
Ranaus 695100 77793.23 13776.29 160.04 0.080 106.69 0.063 80.02 0.080
Ranaus 1202109 96143.65 13776.29 205.92 0.133 137.28 0.105 102.96 0.133
Ranaus 1274729 139669.30 13776.29 314.73 0.310 209.82 0.245 157.37 0.310
Ranaus 4657214 121159.00 13776.29 268.46 0.225 178.97 0.178 134.23 0.225

that were generated have not yet attained shapes that represent

a balance between dispersal and selection. This is evident by the

number of clines that appear to be undergoing bidirectional neu-

tral introgression, the shape and displacement of the clines rep-

resenting adaptive introgression, and the narrow widths of the

clines representing tension zones relative to the per-generation

dispersal. The unique characteristics of these clines have allowed

us to make estimates of time since the initiation of secondary con-

tact. Moreover, the early age of this hybrid zone has allowed us to

estimate the strength of selection driving the movement of adap-

tive clines. The observed levels of neutral and adaptive introgres-

sion are consistent with a weak barrier between these species, and

it is likely that this hybrid zone is at early stages of dissolution,

ultimately resulting in the genetic swamping of the range-limited

species.

The limited range, weak reproductive isolation, and low

degree of genetic and morphological divergence of R. austro-

oreganus are consistent with its recent origin through the pro-

cess of peripatric (budding) speciation (Mayr 1942; Frey 1993;

Patiño et al. 2014; Cruzan 2018). Cases for peripatric speciation

are typically built on the observation of contemporary geographic

distributions, with one species having a limited distribution at the

periphery of the other (Grossenbacher et al. 2014; Christie and

Strauss 2018). On the other hand, many of these pairs of species

display substantial phylogenetic divergence, suggesting that their

contemporary ranges may not accurately reflect historical distri-

butions (Warren et al. 2014; Christie and Strauss 2018). Ranun-

culus austro-oreganus may be an exceptional example of peri-

patric divergence because it appears to be recently derived. The

close relationship between these species is supported by weak re-

productive barriers, low levels of phenotypic and nuclear genetic

divergence, weak ecological differentiation, and a high degree of

cpDNA haplotype sharing (unpubl. data). Moreover, the low seed

set after interpopulation crosses, which is similar to seed set af-

ter selfing in R. austro-oreganus, indicates that these populations

are fixed for similar complements of deleterious alleles (i.e., they

share substantial amounts of drift load; Charlesworth and Willis

2009). The high level of drift load shared among populations of

R. austro-oreganus suggests this lineage recently passed through

a genetic bottleneck, which is consistent with its recent peripatric

origin.

Under most circumstances, it is expected that a recently de-

rived inbred lineage with low fecundity would be short lived, but

during divergence R. austro-oreganus appears to have acquired

cytoplasmic factors that may inhibit genetic swamping from R.

occidentalis. The presence of groups of coincident and concor-

dant abrupt clines for both cytoplasmic haplotypes and nuclear

SNPs, and the asymmetrical mating barriers due to low seed set

for crosses to R. austro-oreganus as the seed parent, is consis-

tent with the effects of cytonuclear epistasis (Asmussen et al.

1989; Arnold 1993; Burton et al. 2013; McKenzie et al. 2016).

Such cytonuclear incompatibilities, constituting Bateson-Muller-

Dobzhansky incompatibilities (BDMI; Orr 1996), appear to be

common and have been observed to arise during early stages

of divergence (Levin 2003; Greiner et al. 2011; Burton et al.

2013; Barnard-Kubow et al. 2016). Asymmetrical mating is ev-

ident because seed set and seedling fitness were higher with R.

occidentalis acting as the maternal parent compared to the recip-

rocal cross, perhaps because of the effects of heterosis (Rhode

and Cruzan 2005). However, we would normally expect a sim-

ilar level of heterosis after interspecific crosses with R. austro-

oreganus as the maternal parent, so the low seed numbers and

offspring fitness indicate the effects of cytonuclear incompatibil-

ities. Cytonuclear incompatibility would be expected to result in
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asymmetrical introgression (Tiffin et al. 2001; Lowry et al. 2008),

but in this case, it appears that the barrier is not strong enough to

prevent substantial levels of gene flow from R. occidentalis into

R. austro-oreganus populations.

Ranunculus austro-oreganus may represent an exception

among cases of peripatric derivation because its current distri-

bution may correspond closely to its geographic origin. The two

phenotypic traits differentiating R. austro-oreganus are consis-

tent with its origin in a nearby high-elevation location; higher

leaf trichome density provides UV protection at high elevation,

and anthocyanin pigments provide better heat absorption in cold

climates for more rapid floral development (Landi et al. 2015;

Buckley et al. 2019). The only taxonomic character that clearly

delineates these species is the ventral petal color, but in its cur-

rent range, it is difficult to find occurrences of R. austro-oreganus

where all individuals have consistently dark red ventral petal

coloration (personal observation). Although it may be debatable

whether R. austro-oreganus is a separate species, such unique pe-

ripheral populations are valuable targets for conservation efforts

(Lesica and Allendorf 1995).

CLINE ANALYSES

The recent initiation of secondary contact between R. occiden-

talis and R. austro-oreganus has allowed us to estimate param-

eters for time since establishment of the hybrid zone, the per-

generation dispersal rate, and the selection coefficients for SNPs

representing adaptive introgression. This region of secondary

contact is also unusual because it appears to be undergoing bidi-

rectional expansion, not only for (nearly) neutral clines, but also

for the movement of clines representing tension zones and adap-

tive introgression. The 95% confidence intervals for neutral and

tension zone cline centers covered a 10-km hybrid zone region

bounding the presumed location of secondary contact. The posi-

tion of clusters of tension zone cline centers and high levels of

linkage disequilibria in populations on both sides of the hybrid

zone indicate ongoing and extensive bidirectional introgression,

with some degree of asymmetry biased toward the range of R.

austro-oreganus. The observation of extensive neutral and adap-

tive introgression along with the lack of coincidence among ten-

sion zone clines (barrier loci) indicates a low degree of coupling

(Ravinet et al. 2017; Butlin and Smadja 2018), and consequently

a weak boundary between these recently diverged species.

The results of the genomic cline analyses were consistent

with the geographic cline analysis in several respects. Compared

to previous studies (e.g., Gompert and Buerkle 2012; Gompert

et al. 2017; Jahner et al. 2021; Wen and Fu 2021), the range of

the hybrid index was limited (i.e., from ∼0.5 to ∼0.85), which is

consistent with a low level of divergence between these two Ra-

nunculus species. Moreover, a high proportion of the clines ana-

lyzed displayed excess ancestry, and most of these had centers

displaced toward R. austro-oreganus. The correspondence be-

tween classifications of individual clines based on the geographic

and genomic analyses was low. Most previous studies have also

found that correlations between genomic and geographic cline

parameters were weak or absent (e.g., Teeter et al. 2010; Grossen

et al. 2016; Souissi et al. 2018), but one study found high corre-

spondence for an abrupt hybrid zone between strongly differenti-

ated species (Larson et al. 2014). In the case of this Ranunculus

hybrid zone, the inclusion of geographic information in the anal-

ysis of clines appears to be critical for understanding the strength

of reproductive isolation and the potential for selection to affect

rates of introgression.

There are many examples of the genomic and fitness effects

of adaptive introgression after hybridization (e.g., Martin et al.

2005; Martin et al. 2006; Whitney et al. 2010; Pardo-Diaz et al.

2012; Hedrick 2013; Martin and Jiggins 2017; Suarez-Gonzalez

et al. 2018; Grant and Grant 2019), but few previous studies

have characterized the waves of advance for clines of putatively

advantageous alleles following secondary contact (e.g., Menon

et al. 2020). By comparing the widths of putatively neutral and

adaptive clines, we estimated the velocity of introgression and

the selection coefficients required to account for the observed

rates of cline expansion. Although the mathematical treatment

conducted by Fisher (1937) predicted that cline width would be

inversely proportional to the selection coefficient, we found the

opposite, as clines that have introgressed further were also wider.

However, Fisher’s analyses did not account for the effects ge-

netic drift within populations, which would slow the rate of fixa-

tion within populations. Fixation rates within populations would

also be slowed by the longevity of individual plants, whereas the

spread of alleles at the leading edge of the wave could occur on

an annual basis through pollen and seed dispersal, and could be

accelerated by long-distance dispersal (Piálek and Barton 1997).

Landscape genetic studies on seed-mediated gene flow for other

species in the Rogue River Valley indicate that large mammals

may be important dispersal vectors for plants in this geographic

region (Cruzan and Hendrickson 2020). Based on the average

ratio of displacement of clines to cline width for advantageous

alleles (∼0.3), the migration rate is about three times the rate

of increase in allele frequencies within populations. Given the

early stages of hybrid zone development, there may not have been

enough time for cline shape to reflect a balance among the pro-

cesses of dispersal, drift, and selection.

We do not have information on the phenotypic effects of

the expressed genomic regions associated with the advantageous

SNPs, but they are unlikely to be linked to environmental (ex-

trinsic) effects of selection because there was little evidence of

niche differentiation between these species. On the other hand,

six of the nine SNPs displaying putatively adaptive clines, and

most of those with the highest selection coefficients, displayed
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introgression toward R. austro-oreganus. Given the high level of

drift load in this species, these SNPs could be linked to regions

representing fixed deleterious alleles in R. austro-oreganus. The

three SNPs representing adaptive clines introgressing into the

range of R. occidentalis had the smallest selection coefficients.

Two of these represent cytoplasmic haplotypes, and all three

are apparently associated with novel mutations acquired during

divergence of the R. austro-oreganus lineage. The presence of

novel advantageous mutations in this lineage is unexpected be-

cause the overall level of genetic divergence is low, and bene-

ficial mutations are generally considered to be rare (Orr 2010).

Further characterization of the genomic regions associated with

these SNPs and their phenotypic effects would be required to de-

termine the nature of their associated fitness advantages.

The hybrid zone separating these two lineages of Ranuncu-

lus is unique because it is only around 10-km wide and the clines

representing tension zones are narrower than the per-generation

dispersal rate. In contrast, almost all other hybrid zones extend

over tens to hundreds of kilometers and are characterized by large

numbers of coincident and concordant clines representing stable

species boundaries (Toews and Brelsford 2012; De La Torre et al.

2015; Gompert et al. 2017; Stankowski et al. 2017; McEntee et al.

2020; Slager et al. 2020). Such abrupt clines are unusual, but sim-

ilarly narrow clines have been recorded for a field cricket hybrid

zone (Larson et al. 2014). The cricket clines differed from the

abrupt clines in the Ranunculus hybrid zone because they were

coincident and appeared to be maintained by prezygotic mating

barriers. The noncoincidental clusters of tension zone clines sep-

arating the two species of Ranunculus are more likely to represent

groups of interacting genomic regions contributing to postzy-

gotic barriers. Prezygotic barriers are unlikely because the bowl-

shaped flowers of these plants are visited by a variety of insects,

and based on levels of seed set, there does not appear to be se-

lection against intermediate flower morphologies (unpubl. data),

which would be required for the maintenance of sharp clines.

The majority of clines observed between these two species

of Ranunculus were characterized as neutral, or nearly neutral

to selection; they are expanding into the ranges of both species

with their centers remaining close to the original location of sec-

ondary contact. The bidirectional expansion of these clines, and

the hybrid zone in general, is supported by the observation of

high levels of linkage disequilibria in populations on both sides

of the region defined by the majority of neutral and tension zone

cline centers. High levels of linkage disequilibria are typical of

hybrid zone movement (Barton and Hewitt 1985; Cruzan 2005;

van Riemsdijk et al. 2019; Wielstra 2019), but the Ranunculus

hybrid zone is unique because there are high levels of disequilib-

ria on both sides, indicating that introgression is progressing into

the ranges of both species. This bidirectional expansion appears

to include the movement of clusters of tension zone clines, waves

of adaptive introgression, and the widening of putatively neutral

clines. For the neutral clines, there is a range of cline widths,

so it is possible that some of the genomic regions represented by

these SNPs could be affected by selection. Selection estimates for

the narrowest adaptive clines were minimal, so it is more likely

that the narrower neutral clines are weakly affected by selection

against interspecific genomic combinations. Although the taxo-

nomic distinction between these species may persist by the pres-

ence of differences in ventral petal color, their genetic distinction

will continue to erode with the progress of introgression across

this weak species boundary.

The clines for the two phenotypic traits differentiating these

two species of Ranunculus appear to be similar to the neutral

(leaf trichome density) or tension zone (ventral petal color) SNP

clines. The trichome density cline was relatively wide with its

center close to the region of secondary contact suggesting that

this trait is neutral or only weakly affected by selection. In con-

trast, the petal color cline was abrupt and similar in shape to

the SNP tension zone clines. Given that intermediate petal color

morphs did not have lower seed set, this cline is more likely to

be maintained by epistasis among interspecific genomic regions,

but the nature of this interaction and the causes of low fitness are

unknown. Although the petal color cline was not coincident with

any of the other tension zone clines, the SNPs analyzed represent

only a sample of all of the genomic regions that might be un-

der selection. Although the petal color difference is striking, this

trait may be effectively neutral across the current ranges of these

species, and the appearance of strong selection may be only due

to genomic interactions that have yet to be characterized.

Conclusions
The distribution of phenotypic traits and the weak ecological

and genetic differentiation between these species are consistent

with the hypothesis that the range-limited Ranunculus austro-

oreganus originated through peripatric divergence. Unlike other

putative examples of peripatric speciation, R. austro-oreganus

displays characteristics of a lineage that has recently recovered

from a severe population bottleneck, which is consistent with di-

vergence through selection and genetic drift in a peripherally iso-

lated population. These two species are separated by a narrow

region of secondary contact. The structure of this hybrid zone

is affected to some degree by cytonuclear incompatibility, which

is supported by asymmetrical cross-compatibility and the pres-

ence of clusters of coincident and concordant tension zone clines

that include nuclear SNPs and cytoplasmic haplotypes. Although

cytonuclear epistasis is predicted to favor introgression from the

range-limited species into the range of the widespread species,

the low fitness of R. austro-oreganus populations would favor
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introgression in the opposite direction. The clusters of tension

zone clines are not coincidental, resulting in weak coupling and

high levels of introgression across the species boundary. The ob-

served high levels of linkage disequilibria on both sides of the

hybrid zone indicate that introgression is bidirectional and ongo-

ing. This region of secondary contact is unique in many respects,

including its recent origin, bidirectional expansion, and the pres-

ence of clines representing neutral and adaptive introgression.

The hybrid zone between these species of Ranunculus appears

to be at early stages of dissolution, and ongoing introgression is

predicted to ultimately result in genetic swamping of the range-

limited species.
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Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig.S1. Sampling locations for the Ranunculus occidentalis (yellow), R. austro-oreganus (orange), and their putative hybrids (green) in Jackson County,
Oregon. The inset shows the geographic range of R. occidentalis in green and of R. austro-oreganus (small orange rectangle).
Fig. S2. The relationship between the mean and the variance in ventral petal color for populations of Ranunculus occidentalis (yellow markers), R. austro-

oreganus (red markers), and hybrids (green markers) in Jackson County, Oregon. (quadratic model adjusted R2 = 0.66, F2/27 = 29.2, P < 0.0001). Marker
colors correspond to the sampling locations shown in Figure 1. The two populations of each species with the lowest variance in ventral petal color (blue
boxes) were used to identify SNP outlier loci.
Fig. S3. Predicted geographic distributions for Ranunculus austro-oreganus (red) and R. occidentalis (yellow), and areas where both species are predicted
to occur (orange) in the Rogue River Valley region (Jackson County) of southern Oregon (inset map) based on ecological niche modeling. Sample locations
are indicated by black markers.
Fig. S4. Genetic cluster analysis based on 2196 SNPs for K = 2. Populations are ordered by location from west to east. Populations are categorized as
representing Ranunculus occidentalis, R. austro-oreganus, or putative hybrids based on the presence of ventral petal color morphs. The populations with
green stars within the R. austro-oreganus range had some plants with yellow ventral petals present.
Fig. S5. The significant cline models from HZAR for 50 SNP outlier loci from the hybrid zone between Ranunculus occidentalis (yellow outlines) and R.

austro-oreganus (red outlines). Cines are grouped according to their classification as tension zones, or cases of neutral or adaptive introgression. Nine of
the SNPs only occurred as homozygotes or their adjacent regions matched plant mtDNA (Table S3) and were assumed to represent cytoplasmic genomes
(blue outlines). Cytoplasmic SNPs within two groups (four shaded blue and two shaded green) appeared to be segregating together and were assumed to
represent two different haplotypes.
Fig. S6. A summary of the numbers of pairs of loci having significant linkage disequilibria for populations with the highest estimates of D̄ in the range of
Ranunculus occidentalis (yellow squares), R. austro-oreganus (red squares), or both for the three groups of clines (tension zones, and neutral and adaptive
introgression) in Fig. S6.
Fig. S7. Top: The histogram describes the distribution of hybrid index values across all 50 loci fall between 0.5 and 0.85. Bottom: Parameter outliers
from Bayesian genomic cline analysis (bgc; Gompert and Buerkle 2012) for the 50 clines between Ranunculus occidentalis and R. austro-oreganus. The
dashed line indicates the expected relationship when R. occidentalis ancestry (Φ) is equivalent to the hybrid index. Cline with greater than expected R.
occidentalis ancestry (yellow; α 95% credible interval > 0) or rate (red; β 95% credible interval > 0) or both (green) are above the dashed line (Φ >

hybrid index), those with lower than expected ancestry are below the dashed line (Φ < hybrid index).
Fig. S8. Scatterplot of the cline center (α) and rate (β) parameters from Bayesian genomic cline analysis (bgc; Gompert and Buerkle 2012) for the 50
clines between Ranunculus occidentalis and R. austro-oreganus. Yellow markers and polygons for α < 0 indicate clines with excess R. austro-oreganus

ancestry, and for α > 0 indicate clines with excess R. occidentalis ancestry. Gray markers were not outliers for either parameter. The darker blue shades
indicate larger concentrations of loci. The red markers indicate clines with lower than expected rates of introgression (β > 0), and the green marker
indicates a cline with excess ancestry and a higher than expected rate of introgression.
Appendix 1. Reproductive isolation estimates.
Appendix 2. GBS and bioinformatics processing.
Appendix 3. Supplemental Tables
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