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Premise of research. Sex allocation, the relative energy devoted to producing pollen, ovules, and floral
displays, can significantly affect reproductive output and population dynamics. In this study, we investigated
floral morphology and gamete production in bisexual, distylous plants from a self-incompatible hybrid complex
(Piriqueta cistoides ssp. caroliniana Walter [Arbo]; Turneraceae). Sampling focused on two parent types (C,
V) and their stable hybrid derivative (H). Since H morphotypes are heterotic for growth and fruit production,
we hypothesized that they would produce larger flowers with more gametes. We also anticipated that plants
with long styles (long morphs) would produce less pollen than short morphs, since long-morph pollen is larger.

Methodology. Over two consecutive summers, flowers were collected from 1465 individual plants in 28
field populations. Floral parameters were measured digitally, and each flower’s pollen number, ovule number,
and stigma-anther separation was quantified under a dissecting microscope. Gamete production (n p 332)
and stigma-anther separation (n p 119) were also quantified for plants from a greenhouse accession.

Pivotal results. Floral display differed among morphotypes, with H plants producing the largest flowers
and C plants displaying the least petal separation. Hybrid morphotypes produced significantly more pollen
than parental morphotypes, and pollen quantity was significantly greater for long morphs. Ovule production,
however, was greatest for V flowers. Stigma-anther separation differed between years and style morphs (greater
for short morphs) but not among morphotypes or within a single season.

Conclusions. Differences in pollen production between morphs were not consistent with trade-offs in
pollen size and number or selection for increased male function in short morphs. Greater stigma-anther
separation in short morphs supported the hypothesis of selection to reduce pollen interference. Enhanced floral
display and pollen production followed other heterotic traits observed in H morphotypes. The superior ability
of H morphotypes to attract pollinators and sire seeds might partially explain this hybrid zone’s continuing
expansion.

Keywords: distyly, floral morphology, hybrid zone, pollen, ovule, sex allocation, Turneraceae.

Introduction

Sex allocation is the way in which a hermaphroditic flower’s
energy is partitioned among male and female functions (pri-
mary sex allocation) and floral display (secondary sex allo-
cation; Goldman and Willson 1986). For plants, with their
sedentary adult stages, the ecological and genetic contexts un-
der which reproduction occurs can lead to variation in resource
allocation, including flowers’ morphological traits and gamete
production (Ashman and Morgan 2004; Zhang 2006). In bi-
sexual angiosperms, primary sex allocation can be quantified
by assessing numbers of ovules and pollen grains produced
per flower (Barrett et al. 1996), and ratios between female and
male gamete production (pollen-to-ovule [P : O] ratios) can

1 Author for correspondence; e-mail: jrward@unca.edu.

Manuscript received October 2013; revised manuscript received January 2014;
electronically published April 24, 2014.

describe investment to sex-specific functions and can indicate
mating systems (Cruden 1977). Intraspecific P : O ratios might
remain constant because of evolutionary constraints maxi-
mizing reproductive success (Charlesworth and Charlesworth
1981) or vary with exogenous factors (Delesalle et al. 2007)
such as nutrient availability, habitat characteristics, edaphic
conditions, and water stress (Delph et al. 1997). Primary sex
allocation can constrain total seed output (Burd 1994; Harder
and Routley 2006) or affect mating patterns within and among
populations (Barrett 2002a).

Floral displays and reproductive morphology, which can at-
tract animal visitors and facilitate gamete movement, also af-
fect the reproductive success of allogamous plants. Compo-
nents of floral morphology, including petal separation and size,
can influence pollinator activity and even promote prezygotic
isolation (Campbell and Aldridge 2006). Within a species,
flower size often varies (Cresswell 1998), and it can be ge-
netically or ontogenetically correlated with total plant size
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(Worley and Barrett 2001; Lehtila and Holmen 2007). Spatial
placement of reproductive structures within a flower can in-
fluence pollen removal, transfer, or receipt (Barrett 1990;
Cresswell 2000). In heterostyly, individual plants within a pop-
ulation display reciprocal differences in the positioning of stig-
mas and anthers and typically have genetic self-incompatibil-
ities, too (Dulberger 1992); this suite of phenotypic and genetic
traits promotes outcrossing (Charlesworth and Charlesworth
1987; Lloyd and Webb 1992; Baena-Diaz et al. 2012), reduces
interference during pollen receipt or removal (Bertin and New-
man 1993; Barrett 2002b), and avoids inbreeding depression
(Charlesworth and Charlesworth 1979). Furthermore, ratios
of long and short morphs can control metapopulation dynam-
ics or deme persistence (Brys et al. 2004; Feldman 2008). In
distyly, the most common form of heterostyly, morphs are
termed long (pin) or short (thrum) on the basis of style length
(Barrett 2010), and floral morphs often vary in pollen pro-
duction and anther/stigma lengths (Richards and Barrett
1992). Morphs display reciprocal herkogamy, in which com-
plementary anther and stigma heights promote intermorph
pollinations (Barrett 2002a). Under field conditions, perfect
reciprocal herkogamy is rarely observed; instead, the physical
distance between anthers and stigmas may vary among indi-
viduals and among flowers within individuals (Sanchez et al.
2008) and have consequences for compatibility (Nishihiro et
al. 2000).

Members of the Piriqueta cistoides ssp. caroliniana Arbo
complex (Turneraceae; hereafter referred to as P. caroliniana;
Arbo 1995) were used to assess intraspecific and intermor-
photype variation in primary sex allocation. This group of
herbaceous, perennial hermaphrodites is found throughout the
southeastern United States and the Caribbean, where it occurs
in small (typically 25–100 individuals; Cruzan 2005), low-
density (Feldman and Morris 2011) populations separated by
several kilometers (Picotte et al. 2007). Plants are distylous
and self-incompatible (Wang and Cruzan 1998; Tamari et al.
2001), and a single segregating locus might control both mor-
phological separation and pollen/stigma incompatibilities
(Tamari et al. 2001). More recent work has suggested that
these interrelated phenotypic traits might be controlled by a
supergene (see Shore et al. 2006). Piriqueta caroliniana pro-
duces actinomorphic flowers most prolifically from May to
August, on multiple vegetative branches and nodes per plant
(Feldman 2008), and flower morphology does not differ
among nodes (J. R. Ward, personal observation). Flowers are
open for !6 h/d, regardless of pollination/fertilization status
(Anton et al. 2013) or environment (field vs. greenhouse; An-
ton 2008), and are visited by 140 species of insects from at
least four orders (Feldman 2008). Although symmetry does
not have significant effects on P. caroliniana’s rates of insect
visitation, increased floral perimeter and area and reduced
petal separation are attractive to pollinators (Anton et al.
2013).

This study focused on variation in gamete production and
floral morphology for two morphotypes and their late-gen-
eration heterotic hybrids (Rhode and Cruzan 2005). The car-
oliniana (C) morphotype lives in well-drained quartz soils
within turkey oak (Quercus laevis Walter) scrub habitats
(USFWS 2013a) in southern Georgia and northern Florida,
while the viridis (V) morphotype inhabits hydric slash pine

(Pinus elliottii Engelm.) flatwood habitats (USFWS 2013b) in
southern Florida (Picotte et al. 2007). Over the past 5000 yr,
C and V (parental) morphotypes have interbred to produce a
stable hybrid derivative (H morphotype) that thrives across a
broad range of water availabilities and community types
throughout central Florida (Maskas and Cruzan 2000; Picotte
et al. 2007), and the hybrid zone’s extent and H morphotypes’
frequency are expanding (Cruzan 2005). Aridity and soil nu-
trients vary among the morphotypes’ habitats, such that V
habitats have the highest water and nitrogen availability
(Picotte et al. 2009). Hybrids exhibit heterosis and positive
epistasis for vegetative traits and fruit production (Rhode and
Cruzan 2005). In common field gardens, H morphotypes pro-
duce larger flowers (greater area) with less petal separation
(Anton et al. 2013) than parental types.

In our survey of natural Piriqueta populations, we hypoth-
esized that H morphotypes would produce more gametes and
larger flowers than those from C and V populations. Previous
observations of common gardens showed interannual varia-
tion in floral traits, including area and petal separation (Anton
et al. 2013), so we expected to see differences over time. Since
long floral morphs typically produce larger pollen grains than
short morphs in distylous plants (Barrett and Cruzan 1994),
including Piriqueta (M. B. Cruzan, personal observation), long
morphs might experience energetic trade-offs, producing fewer
total grains per flower. Long-morph flowers might devote
fewer resources to male function than their short-morph con-
specifics (Kohn and Barrett 1992), so we predicted that long
flower morphs would produce fewer total pollen grains (but
see Valois-Cuesta et al. 2012). Finally, we expected herkogamy
to differ between hybrid and parental morphotypes but to be
stable within and among years, as greenhouse-grown individ-
uals showed little variation in this trait over time (Anton et
al. 2013). The P. caroliniana study system allowed us to com-
pare sex allocation patterns between two distinct style morphs
and among hybrid and parental morphotypes and to draw
conclusions about the effects of sex allocation on hybrid zone
dynamics. In addition, combining measurements from field-
and greenhouse-grown plants allowed us to comment on the
relative stability of observed sex allocation patterns.

Material and Methods

In July 2008 and June 2009, we sampled morphotypes (C,
V, H) of Piriqueta caroliniana throughout their native range
in Florida and southern Georgia. By measuring over multiple
seasons and by resampling some populations within seasons,
we could address the temporal stability of sex allocation pat-
terns. To assess variation among populations, 1465 flowers
were obtained from individual plants in 28 distinct populations
(14 C, 9 V, 10 H). To determine temporal patterns in floral
morphology and sex allocation, individual plants within three
large H populations (n 1 200 individuals; mean population
size in this genus p 25–100 individuals; Cruzan 2005) were
tagged, and flowers were sampled repeatedly in 2008 (231
samples over 8 d) and 2009 (334 samples over 7 d). Each
plant’s height, number of leaf nodes, leaf area, and fruit pro-
duction were measured. Vegetative plant size was calculated
as the product of total stem length and node number (Picotte
et al. 2007), a parameter that predicts both future growth and

This content downloaded from 131.252.181.103 on Fri, 13 Jun 2014 18:43:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


520 INTERNATIONAL JOURNAL OF PLANT SCIENCES

Fig. 1 Mean (�SE) floral perimeter (A) and area (B) for field-collected caroliniana (C; n p 106), hybrid (H; n p 202), and viridis (V; n p
67) morphotypes. Letters above bars indicate significant differences between means, as identified through Tukey post hoc testing.

Fig. 2 Mean (�SE) petal separation (mm2) for caroliniana (C;
n p 106), hybrid (H; n p 202), and viridis (V; n p 67) morphotypes.
Letters above bars indicate significant differences between means, as
identified through Tukey post hoc testing.

overwinter survival (Rhode and Cruzan 2005). All flower
morphs (long vs. short) were recorded, and each flower was
photographed and dissected in the field. Ovaries were stored
in glycerol and anthers were stored in 70% ethanol for pres-
ervation until ovule and pollen counts were conducted. Dis-
sected flowers with intact reproductive features were collected
and stored in 70% ethanol to assess spatial separation between
stigmas and anthers.

Scaled photographs of field-collected flowers were measured
in ImageJ (National Institutes of Health) to determine floral
perimeter, floral area, and area of the smallest circle encom-
passing all petals. To quantify petal separation, the flower’s
area was subtracted from the smallest encompassing circle’s
area (Anton et al. 2013). Nested ANOVA (PROC MIXED,
with populations nested in morphotypes; fixed term p mor-
photype; random term p population; a p 0.05 in this and
all other analysis) with Tukey’s post hoc tests was run in SAS
(ver. 9.2; SAS Institute 2011) to detect significant differences
in floral characteristics among morphotypes. Regression
(PROC REG; SAS ver. 9.2) was used to assess relationships
between plant size and flower size and between plant size and
fruit production. In cases where multiple flowers were sampled
from single plants, mean values per plant were used in statis-
tical analyses.

To determine gamete production, numbers of pollen and
ovules were counted for each field-collected flower. Pollen and
ovule counts were also recorded for each of 332 plants (one
flower per plant: 31 C from three populations; 294 H from
five populations; 7 V from three populations) from a long-
standing greenhouse accession, allowing this study to address
the effects of environmental variation on sex allocation pat-
terns. Greenhouse plants were germinated from field-collected
seeds and maintained under consistent light (16L : 8D, to max-
imize flower production; J. R. Ward, personal observation),
humidity, and watering conditions. For all samples, ovaries
were cross-sectioned and mounted in 100% glycerol, dissected
using a razor blade and small forceps, and examined under
40# magnification to count ovules. To evaluate pollen pro-

duction, an individual’s anthers were placed in 500 mL of 70%
ethanol and vortexed for 2 min. Immediately following vor-
texing, 10 mL of this solution was pipetted to cover nine
squares on a hemocytometer, pollen grains in three 1-mm2

squares were counted under 40# magnification, and total pol-
len grain counts were extrapolated from this mean (Thompson
et al. 1989).

Nested ANOVA (PROC MIXED, with populations nested
in morphotypes; fixed terms p morph, morphotype, year; ran-
dom term p population) with Tukey’s post hoc tests was run
in SAS (ver. 9.2) to detect differences between style morphs,
morphotypes, or years with respect to mean pollen grains per
flower, mean number of ovules per flower, and mean pollen-
to-ovule ratio. PROC REG (SAS ver. 9.2) was used to deter-
mine relationships between gamete production and plant size.
In cases where multiple flowers were sampled from single
plants, mean values per plant were used in statistical analyses.

This content downloaded from 131.252.181.103 on Fri, 13 Jun 2014 18:43:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


WARD ET AL.—SEX ALLOCATION IN A DISTYLOUS HYBRID COMPLEX 521

Fig. 3 Mean (�SE) pollen quantity for caroliniana (C; n p 274), hybrid (H; n p 536), and viridis (V; n p 206) morphotypes. Letters
above bars indicate significant differences between means, as identified through Tukey post hoc testing. Pollen-to-ovule ratios, driven by pollen
counts, followed identical trends.

Fig. 4 Mean (�SE) ovule production for caroliniana (C; n p 274), hybrid (H; n p 534), and viridis (V; n p 206) morphotypes. Letters
above bars indicate significant differences between means, as identified through Tukey post hoc testing.

To quantify variation in stigma-anther separation, one dis-
sected flower per plant was photographed through a com-
pound microscope (40# total magnification). A subset of flow-
ers from a greenhouse accession (n p 119; 6 C from two
populations, 44 H from eight populations, 17 V from three
populations) was also measured. SketchUp (ver. 7; Google) was
used to add a scale to each photograph, allowing digital mea-
surements of anthers and stigmas to be made. Length of each
anther and style (mm) and mean separation of male and female
components were recorded, and the effects of morphotype and
floral morph on stigma-anther separation were tested using
nested ANOVA (PROC MIXED, with populations nested in
morphotypes; fixed terms p morphotype, morph; random
term p population) with Tukey’s post hoc tests in SAS (ver.
9.2). Variation in floral traits in resampled populations was

assessed using repeated-measures analysis (PROC MIXED,
SAS ver. 9.2).

Results

In all analyses, population had a significant effect on in-
dependent variables. Because the study’s focus is on distyly
and intermorphotype differences, however, the effects of pop-
ulation are not discussed further.

Floral Architecture

Morphotype affected all parameters examined. Hybrids had
significantly larger mean perimeter (F2, 320 p 27.99, P p 0.001;
fig. 1A) and mean area (F2, 320 p 27.99, P p 0.001; fig. 1B)
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Fig. 5 Mean (�SE) pollen quantity for long (short anther; n p 555) and short (long anther; n p 462) style morphs in two years. Ovule
quantity did not vary between morphs. Letters above bars indicate significant differences between means, as identified through Tukey post hoc
testing.

Fig. 6 Mean (�SE) spatial separation (mm) for long (short anther;
n p 300) and short (long anther; n p 275) style morphs in two years.
Spatial separation did not differ among morphotypes.

than either parental type. Morphotypes also differed in their
petal separation (F2, 320 p 9.92, P p 0.001), which was lowest
for C morphotypes (fig. 2). None of these floral traits was
affected by floral morph (P 1 0.05). Across all morphotypes,
there was no relationship between plant size and individual
floral area (t375, 376 p 0.88, P p 0.37), although larger plants
produced more fruits (t374, 374 p 13.53, P p 0.001).

Gamete Production

As hypothesized, hybrid morphotypes from both field col-
lections (F2, 974p 71.29, P p 0.001; fig. 3) and greenhouse
accessions (F2, 334 p 9.46, P p 0.001) produced significantly
more male gametes than parental lineages. In the field, pollen
production differed between years and was higher in 2009 than
in 2008 (F1, 974 p 62.32, P p 0.001). Repeated-measures
ANOVA revealed nearly significant increases in pollen pro-
duction over time, within a single season (F1, 140 p 8.01, P p
0.053). Ovule production per flower also differed by mor-
photype, with V plants producing the most ovules per flower
under both field (F2, 972 p 27.7, P p 0.001; fig. 4) and green-
house (F2, 334 p 8/95, P p 0.001) conditions. More ovules
were produced per flower in 2009 than in 2008 (F1, 972 p
27.88, P p 0.001), but repeated-measures ANOVA showed
no effect of time (within a single season) on ovule production
(F1, 142 p 0.25, P p 0.62). Pollen-to-ovule ratios differed
among morphotypes in the field (F2, 964 p 32.00, P p 0.001)
and greenhouse (F2, 334 p 5.43, P p 0.005) and were signif-
icantly higher for H morphotypes (mean � SE for field plants:
C p 72.4 � 6.7, H p 149.7 � 8.2, V p 50.0 � 5.4); this
trend was driven by enhanced pollen production by hybrids.

Plants with short anthers (long morph) produced signifi-
cantly more pollen per flower than plants with long anthers
(short morph) in both years (F1, 974 p 79.78, P p 0.001; fig.
5), but ovule production per flower did not differ between
floral morphs (F1, 972 p 0.74, P p 0.39). Pollen-to-ovule ratios,
driven by pollen numbers, were higher in short-morph plants
(F1, 964 p 27.73, P p 0.001). Larger plants produced more
pollen per flower (t1, 519 p 4.60, P p 0.001), although this

relationship was weak (r2 p 0.04). Ovule production per
flower was negatively and weakly correlated with plant size
(t1, 227 p �2.35, P p 0.0194, r2 p 0.02).

Herkogamy

Mean (�SE) spatial separation (mm) between anthers and
stigmas was greater for short morphs than for long morphs
(F1, 562 p 1539.49, P p 0.001), but separation did not differ
among morphotypes (F2, 562 p 2.31, P p 0.10; fig. 6). Similar
results were observed in greenhouse-grown flowers, in which
separation was greater for short morphs (F1, 34 p 30.64, P p
0.001) but did not vary by morphotype (F1, 34 p 2.30, P p
0.12). In resampled populations, spatial separation did not
vary within a season (effect of time: F1, 142 p 2.30, P p 0.07).
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Discussion

We found differences in flower morphology and sex allo-
cation that were consistent with heterotic traits displayed by
the H morphotype. Caroliniana (C) plants had the least spatial
separation between petals, but hybrid plants produced larger
flowers (more perimeter and area) than either of the parental
(C or V) morphotypes. Larger flowers are attractive to Piri-
queta pollinators, and this trait is more important to polli-
nators than petal separation (Anton et al. 2013). Therefore,
H plants in mixed populations, such as those occurring at the
hybrid zone’s edges (Maskas and Cruzan 2000), should receive
more visitors—and perhaps then produce more seeds—than C
or V morphotypes. In low-density Piriqueta populations, vis-
itation and pollen deposition to individual flowers might be
limited (Feldman 2008), triggering intraspecific competition.
Thus, floral phenotypic differences and the resulting effects on
pollinator behaviors could be an important factor contributing
to hybrid zone expansion (Cruzan 2005) within this species
complex. Petal size and separation varied among morphotypes.
However, although studies of other heterostylous systems have
found intermorph variation in these floral traits (Mazer and
Hultgard 1993; Wolfe 2001), petal size and separation did not
vary significantly between long- and short-style Piriqueta.

Larger plants produced more fruits than small plants under
field conditions, as expected (Weiner et al. 2009), regardless
of population of origin or morphotype. However, there was
no relationship between plant size and flower size in any mor-
photype. The Piriqueta cistoides ssp. caroliniana complex has
a generalist pollinator syndrome (Anton et al. 2013), so pro-
ducing larger flowers should be advantageous. However, other
studies have found trade-offs between components of sex al-
location, such that large flowers produce fewer gametes per
flower (Parachnowitsch and Elle 2004). Relationships between
floral display size, seasonal production of gametes, and lifetime
reproductive success in this long-lived perennial should be in-
vestigated further to better understand competing selection
pressures on phenotypic traits related to sex allocation.

Pollen production differed among morphotypes, with hybrid
plants producing more grains per flower than parental types.
These patterns were expected, as hybrids are heterotic for both
vegetative traits and reproductive output (Rhode and Cruzan
2005). Pollen output per flower might also influence the future
composition of this species complex, allowing more late-gen-
eration hybrids to be produced at the hybrid zone’s leading
edge via pollen-facilitated introgression (Martin and Cruzan
1999). P : O ratios followed trends observed in pollen pro-
duction. The actual values of these ratios classified Piriqueta
morphotypes’ reproductive system as facultative autogamy
(Cruden 1977). All three morphotypes, although early-suc-
cessional (ruderal) plants, are self-incompatible (Wang and
Cruzan 1998), however. Lower-than-expected P : O ratios in
this species complex, which could be a result of lower pollen
or higher ovule production, remain unexplained.

Viridis (V) morphotypes, whose plants and flowers were
typically smaller than those of other morphotypes, produced
the most ovules, contrary to the predictions of size-dependent
sex allocation (Brunet 1992; but see Mazer and Dawson 2001).
Resource availability often limits ovule production (Lloyd and
Bawa 1984), and both water and soil nutrients are more abun-

dant in V habitats (Picotte et al. 2007). However, the same
pattern persisted under greenhouse conditions, so the factors
controlling ovule production in this group remain unknown.
Although H morphotypes produced fewer ovules per flower
than V morphotypes, previous studies (Rhode and Cruzan
2005) have shown that H flowers produce more seeds. This
is likely due to the effects of the floral trait differences discussed
above on pollinator visitation rates, but future efforts should
focus on relationships among sex allocation, reproductive out-
put, and fitness in this complex. This study revealed significant
relationships between plant size and gamete production per
flower, but regression statistics had little explanatory power
(low r2), so we expect these traits to be differentially influenced
by environmental factors or other unmeasured variables. Intra-
and interannual variation in mean pollen and ovule production
were seen under field conditions. This might be attributed to
changes in exogenous factors like nutrient availability, habitat
characteristics, edaphic conditions, and water stress; each of
these can influence the proportion of total resources allocated
to pollen and ovule production per flower (Zhang 2006).

In Piriqueta, floral morphs differed in both their pollen pro-
duction and spatial separation, but they showed no differences
in ovule production. Long-styled flowers, which are probably
less likely to transfer pollen onto floral visitors (Beach and
Bawa 1980; Cresswell 2000), produced significantly more pol-
len per flower than short-styled flowers. This result is not con-
sistent with a trade-off between pollen size and number (Mazer
and Hultgard 1993), although it is aligned with other studies
that have shown that pin (long-morph) flowers produce more
pollen, higher P : O ratios, and similar numbers of ovules than
thrum (short-morph) flowers (Sampson and Krebs 2012). Re-
duced pollen production by short floral morphs in Piriqueta
does not demonstrate enhanced male function, which has been
demonstrated for short morphs in other heterostylous systems
(Kohn and Barrett 1992; Valois-Cuesta et al. 2012). However,
other factors that might augment male function, like faster
rates of pollen germination or pollen tube growth (Melser et
al. 1999; Pasonen et al. 1999), have yet to be examined in this
species complex. While differences in pollen production be-
tween short- and long-styled floral morphs have been observed
in other angiosperm taxa, they have not previously been re-
ported in other Turneraceae (Swamy and Bahadur 1984).

Across all morphotypes, spatial separation was greatest for
short morphs. The probability of comparable receipt and do-
nation of male gametes via insect pollinators declines dra-
matically as spatial separation increases, so separation should
be maximized in short morphs, which are expected to receive
larger amounts of incompatible self-pollen (Barrett 1990; Ra-
mirez and Navarro 2010). Therefore, greater stigma-anther
separation in short morphs is consistent with selection for re-
duced pollen interference (Barrett 2002b). Resampled popu-
lations showed no significant temporal variation in degree of
stigma-anther separation, suggesting that this phenotypic fea-
ture has little environmental or ontogenetic variation within
the time frame of this study. However, longer-term studies of
herkogamy might be informative, as reduced stigma-anther
distances can be a first step toward the evolution self-com-
patibility (Moeller and Gerber 2005) and might not be prob-
lematic for species without pollen interference (Koelling and
Karoly 2007). Future studies should better quantify the effect
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of spatial separation on pollinator effectiveness in this com-
plex, to determine intrapopulation mating potential (Sanchez
et al. 2008) or test relationships between degree of herkogamy
and pollinator availability (Brys et al. 2007). We might predict
that herkogamy would be stable in this complex, since polli-
nator activity is high across populations of different morpho-
types and sizes (Anton et al. 2013).

The study of distylous systems like the P. cistoides caroli-
niana complex allows a better understanding of the role played
by morphology in the evolution of self-incompatibility. Under
field conditions, floral morph ratios (number of potential com-
patible matings) might have the most important effect on an
individual’s reproductive success (Brys et al. 2007), and
skewed morph ratios might affect population persistence (Brys
et al. 2004) and levels of genetic diversity (Meeus et al. 2012).
While floral morph ratios are temporally constant in some
other heterostylous species (Hodgins and Barrett 2008), func-
tional gender expression can change over time (Gonzalez et
al. 2005). In Piriqueta, ratios vary among populations and
years, ranging from 7 : 1 (long to short) to 4 : 13 (J. R. Ward,
personal observation); interannual variation is likely a result
of metapopulation dynamics (Feldman 2008; Feldman and
Morris 2011). We would predict that populations with more

long morphs would produce the most seeds (Endels et al. 2002;
Cawoy et al. 2006) and would be more likely to avoid ex-
tinction. In fact, a previous field study in this hybrid complex
showed a lower seed set in short floral morphs, consistent with
higher male function (Feldman 2008). With strong reciprocal
herkogamy and self-incompatibility, though, the reproductive
success of Piriqueta may be more sensitive to departures from
equal floral-morph ratios.
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