15 research outputs found

    Diagnostic Validation of a Comprehensive Targeted Panel for Broad Mutational and Biomarker Analysis in Solid Tumors

    No full text
    The use of targeted Next Generation Sequencing (NGS) for the diagnostic screening of somatic variants in solid tumor samples has proven its high clinical value. Because of the large number of ongoing clinical trials for a multitude of variants in a growing number of genes, as well as the detection of proven and emerging pan-cancer biomarkers including microsatellite instability (MSI) and tumor mutation burden (TMB), the currently employed diagnostic gene panels will become vastly insufficient in the near future. Here, we describe the validation and implementation of the hybrid capture-based comprehensive TruSight Oncology (TSO500) assay that is able to detect single-nucleotide variants (SNVs) and subtle deletions and insertions (indels) in 523 tumor-associated genes, copy-number variants (CNVs) of 69 genes, fusions with 55 cancer driver genes, and MSI and TMB. Extensive validation of the TSO500 assay was performed on DNA or RNA from 170 clinical samples with neoplastic content down to 10%, using multiple tissue and specimen types. Starting with 80 ng DNA and 40 ng RNA extracted from formalin-fixed and paraffine-embedded (FFPE) samples revealed a precision and accuracy >99% for all variant types. The analytical sensitivity and specificity were at least 99% for SNVs, indels, CNVs, MSI, and gene rearrangements. For TMB, only values around the threshold could yield a deviating outcome. The limit-of-detection for SNVs and indels was well below the set threshold of 5% variant allele frequency (VAF). This validated comprehensive genomic profiling assay was then used to screen 624 diagnostic samples, and its success rate for adoption in a clinical diagnostic setting of broad solid tumor screening was assessed on this cohort

    Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations

    No full text
    Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.status: publishe

    Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations

    No full text
    Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigate the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We find that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. While the loss of Cdc42 seem generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42 depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.</jats:p

    The Dynamics of Nucleotide Variants in the Progression from Low&ndash;Intermediate Myeloma Precursor Conditions to Multiple Myeloma: Studying Serial Samples with a Targeted Sequencing Approach

    No full text
    Multiple myeloma (MM), or Kahler&rsquo;s disease, is an incurable plasma cell (PC) cancer in the bone marrow (BM). This malignancy is preceded by one or more asymptomatic precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). The molecular mechanisms and exact cause of this progression are still not completely understood. In this study, the mutational profile underlying the progression from low&ndash;intermediate risk myeloma precursor conditions to MM was studied in serial BM smears. A custom capture-based sequencing platform was developed, including 81 myeloma-related genes. The clonal evolution of single nucleotide variants and short insertions and deletions was studied in serial BM smears from 21 progressed precursor patients with a median time of progression of six years. From the 21 patients, four patients had no variation in one of the 81 studied genes. Interestingly, in 16 of the 17 other patients, at least one variant present in MM was also detected in its precursor BM, even years before progression. Here, the variants were present in the pre-stage at a median of 62 months before progression to MM. Studying these paired BM samples contributes to the knowledge of the evolutionary genetic landscape and provides additional insight into the mutational behavior of mutant clones over time throughout progression

    The Cancer Cell Oxygen Sensor PHD2 Promotes Metastasis via Activation of Cancer-Associated Fibroblasts.

    Get PDF
    Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth. Second, it is unknown whether PHD2 regulates cancer by affecting cancer-associated fibroblasts (CAFs). We show that PHD2 haplodeficiency reduced metastasis via two mechanisms: (1) by decreasing CAF activation, matrix production, and contraction by CAFs, an effect that surprisingly relied on PHD2 deletion in cancer cells, but not in CAFs; and (2) by improving tumor vessel normalization. Third, the effect of concomitant PHD2 inhibition in malignant and stromal cells (mimicking PHD2 inhibitor treatment) is unknown. We show that global PHD2 haplodeficiency, induced not only before but also after tumor onset, impaired metastasis. These findings warrant investigation of PHD2's therapeutic potential

    Glycolytic regulation of cell rearrangement in angiogenesis

    No full text
    During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases.status: publishe

    Glycolytic regulation of cell rearrangement in angiogenesis

    Get PDF
    During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases

    The Cancer Cell Oxygen Sensor PHD2 Promotes Metastasis via Activation of Cancer-Associated Fibroblasts

    No full text
    Several questions about the role of the oxygen sensor prolyl-hydroxylase 2 (PHD2) in cancer have not been addressed. First, the role of PHD2 in metastasis has not been studied in a spontaneous tumor model. Here, we show that global PHD2 haplodeficiency reduced metastasis without affecting tumor growth. Second, it is unknown whether PHD2 regulates cancer by affecting cancer-associated fibroblasts (CAFs). We show that PHD2 haplodeficiency reduced metastasis via two mechanisms: (1) by decreasing CAF activation, matrix production, and contraction by CAFs, an effect that surprisingly relied on PHD2 deletion in cancer cells, but not in CAFs; and (2) by improving tumor vessel normalization. Third, the effect of concomitant PHD2 inhibition in malignant and stromal cells (mimicking PHD2 inhibitor treatment) is unknown. We show that global PHD2 haplodeficiency, induced not only before but also after tumor onset, impaired metastasis. These findings warrant investigation of PHD2's therapeutic potential.publisher: Elsevier articletitle: The Cancer Cell Oxygen Sensor PHD2 Promotes Metastasis via Activation of Cancer-Associated Fibroblasts journaltitle: Cell Reports articlelink: http://dx.doi.org/10.1016/j.celrep.2015.07.010 content_type: article copyright: Copyright © 2015 The Authors. Published by Elsevier Inc.status: publishe

    Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism

    No full text
    The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.publisher: Elsevier articletitle: Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism journaltitle: Cell Metabolism articlelink: http://dx.doi.org/10.1016/j.cmet.2015.12.007 content_type: article copyright: Copyright © 2016 Elsevier Inc. All rights reserved.status: publishe

    Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism

    No full text
    The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke
    corecore