25 research outputs found

    Complete sequence of the 22q11.2 allele in 1,053 subjects with 22q11.2 deletion syndrome reveals modifiers of conotruncal heart defects

    Get PDF
    The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 Ã— 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression

    Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion

    Get PDF
    Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10−6). Novel reciprocal case–control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present

    A Novel Non-Allelic Homologous Recombination Event in a Parent with an 11;22 Reciprocal Translocation Leading to 22q11.2 Deletion Syndrome

    No full text
    The most prevalent microdeletion in the human population occurs at 22q11.2, a region rich in chromosome-specific low copy repeats (LCR22s). The structure of this region has eluded characterization due to a combination of size, regional complexity, and haplotype diversity. To further complicate matters, it is not well represented in the human reference genome. Most individuals with 22q11.2 deletion syndrome (22q11.2DS) carry a de novo, hemizygous deletion approximately 3 Mbp in size occurring by non-allelic homologous recombination (NAHR) mediated by the LCR22s. The ability to fully delineate an individual’s 22q11.2 regional structure will likely be important for studies designed to assess an unaffected individual’s risk for generating rearrangements in germ cells, potentially leading to offspring with 22q11.2DS. Towards understanding these risk factors, optical mapping has been previously employed to successfully elucidate the structure and variation of LCR22s across 30 families affected by 22q11.2DS. The father in one of these families carries a t(11;22)(q23;q11) translocation. Surprisingly, it was determined that he is the parent-of-deletion-origin. NAHR, which occurred between his der(22) and intact chromosome 22, led to a 22q11.2 deletion in his affected child. The unaffected sibling of the proband with 22q11.2DS inherited the father’s normal chromosome 22, which did not aberrantly recombine. This unexpected observation definitively shows that haplotypes that engage in NAHR can also be inherited intact. This study is the first to identify all structures involving a rearranged chromosome 22 that also participates in NAHR leading to a 22q11.2 deletion

    Identification of 22q11.2 Deletion Syndrome via Newborn Screening for Severe Combined Immunodeficiency.

    No full text
    PURPOSE: Chromosome 22q11.2 deletion syndrome (22q11.2DS), the most common cause of DiGeorge syndrome, is quite variable. Neonatal diagnosis traditionally relies on recognition of classic features and cytogenetic testing, but many patients come to attention only following identification of later onset conditions, such as hypernasal speech due to palatal insufficiency and developmental and behavioral differences including speech delay, autism, and learning disabilities that would benefit from early interventions. Newborn screening (NBS) for severe combined immunodeficiency (SCID) is now identifying infants with 22q11.2DS due to T cell lymphopenia. Here, we report findings in such neonates, underscoring the efficacy of early diagnosis. METHODS: A retrospective chart review of 1350 patients with 22q11.2DS evaluated at the Children\u27s Hospital of Philadelphia identified 11 newborns with a positive NBS for SCID. RESULTS: Five out of 11 would have been diagnosed with 22q11.2DS without NBS, whereas early identification of 22q11.2DS in 6/11 led to the diagnosis of significant associated features including hypocalcemia, congenital heart disease (CHD), and gastroesophageal reflux disease that may have gone unrecognized and therefore untreated. CONCLUSIONS: Our findings support rapidly screening infants with a positive NBS for SCID, but without SCID, for 22q11.2DS even when typically associated features such as CHD are absent, particularly when B cells and NK cells are normal. Moreover, direct NBS for 22q11.2DS using multiplex qPCR would be equally, if not more, beneficial, as early identification of 22q11.2DS will obviate a protracted diagnostic odyssey while providing an opportunity for timely assessment and interventions as needed, even in the absence of T cell lymphopenia

    Pathogenic variants in CDC45 on the remaining allele in patients with a chromosome 22q11.2 deletion result in a novel autosomal recessive condition

    No full text
    PURPOSE: The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion in humans, with highly variable phenotypic expression. Whereas congenital heart defects, palatal anomalies, immunodeficiency, hypoparathyroidism, and neuropsychiatric conditions are observed in over 50% of patients with 22q11DS, a subset of patients present with additional "atypical" findings such as craniosynostosis and anorectal malformations. Recently, pathogenic variants in the CDC45 (Cell Division Cycle protein 45) gene, located within the LCR22A-LCR22B region of chromosome 22q11.2, were noted to be involved in the pathogenesis of craniosynostosis. METHODS: We performed next-generation sequencing on DNA from 15 patients with 22q11.2DS and atypical phenotypic features such as craniosynostosis, short stature, skeletal differences, and anorectal malformations. RESULTS: We identified four novel rare nonsynonymous variants in CDC45 in 5/15 patients with 22q11.2DS and craniosynostosis and/or other atypical findings. CONCLUSION: This study supports CDC45 as a causative gene in craniosynostosis, as well as a number of other anomalies. We suggest that this association results in a condition independent of Meier-Gorlin syndrome, perhaps representing a novel condition and/or a cause of features associated with Baller-Gerold syndrome. In addition, this work confirms that the phenotypic variability observed in a subset of patients with 22q11.2DS is due to pathogenic variants on the nondeleted chromosome.status: publishe

    Influence of Parent-of-Origin on Intellectual Outcomes in the Chromosome 22q11.2 Deletion Syndrome

    No full text
    Learning and intellectual disabilities are hallmark features of 22q11.2 deletion syndrome. Data are limited, however, regarding influences on full-scale IQ (FSIQ). Here, we investigated possible 22q11.2 deletion parent-of-origin effects. In 535 individuals, we compared FSIQ (≥50), 481 with de novo and 54 with inherited 22q11.2 deletions. In the subsets with data available, we examined parent-of-origin effects on FSIQ. We used linear regression models to account for covariates. Median FSIQ was significantly higher in de novo vs. inherited deletions (77; range 50–116 vs. 67; range 50–96, p de novo deletions (n = 81, 63.0% maternal; p = 0.6882). However, median FSIQ was significantly lower in maternally than in paternally inherited familial deletions (65, range 50–86 vs. 71.5, range 58–96, respectively, p = 0.0350), with the regression model indicating an ~8 point decrement in FSIQ for this variable (p = 0.0061). FSIQ is higher on average in de novo than in inherited 22q11.2 deletions, regardless of parental origin. However, parent-of-origin appears relevant in inherited deletions. The results have potential clinical implications with further research needed to delineate possible actionable mechanisms

    Congenital heart diseases and cardiovascular abnormalities in 22q11.2 deletion syndrome: From well-established knowledge to new frontiers

    No full text
    Congenital heart diseases (CHDs) and cardiovascular abnormalities are one of the pillars of clinical diagnosis of 22q11.2 deletion syndrome (22q11.2DS) and still represent the main cause of mortality in the affected children. In the past 30 years, much progress has been made in describing the anatomical patterns of CHD, in improving their diagnosis, medical treatment, and surgical procedures for these conditions, as well as in understanding the underlying genetic and developmental mechanisms. However, further studies are still needed to better determine the true prevalence of CHDs in 22q11.2DS, including data from prenatal studies and on the adult population, to further clarify the genetic mechanisms behind the high variability of phenotypic expression of 22q11.2DS, and to fully understand the mechanism responsible for the increased postoperative morbidity and for the premature death of these patients. Moreover, the increased life expectancy of persons with 22q11.2DS allowed the expansion of the adult population that poses new challenges for clinicians such as acquired cardiovascular problems and complexity related to multisystemic comorbidity. In this review, we provide a comprehensive review of the existing literature about 22q11.2DS in order to summarize the knowledge gained in the past years of clinical experience and research, as well as to identify the remaining gaps in comprehension of this syndrome and the possible future research directions
    corecore