72 research outputs found
Basic Skills Quality Initiative: training and development programme 2000-2003, end of project report
Recommended from our members
Methane emissions from cattle: estimates from short-term measurements using a Green Feed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer
The Green Feed (GF) system (C-Lock Inc., Rapid City, USA) is used to estimate total daily methane emissions of individual cattle using short-term measurements obtained over several days. Our objective was to compare measurements of methane emission by growing cattle obtained using the GF system with measurements using respiration chambers (RC)or sulphur hexafluoride tracer (SF6). It was hypothesised that estimates of methane emission for individual animals and treatments would be similar for GF compared to RC or SF6 techniques. In experiment 1, maize or grass silage-based diets were fed to four growing Holstein heifers, whilst for experiment 2, four different heifers were fed four haylage treatments. Both experiments were a 4 × 4 Latin square design with 33 day periods. Green Feed measurements of methane emission were obtained over 7 days (days 22–28) and com-pared to subsequent RC measurements over 4 days (days 29–33). For experiment 3, 12growing heifers rotationally grazed three swards for 26 days, with simultaneous GF and SF6 measurements over two 4 day measurement periods (days 15–19 and days 22–26).Overall methane emissions (g/day and g/kg dry matter intake [DMI]) measured using GF in experiments 1 (198 and 26.6, respectively) and 2 (208 and 27.8, respectively) were similar to averages obtained using RC (218 and 28.3, respectively for experiment 1; and 209 and 27.7, respectively, for experiment 2); but there was poor concordance between the two methods (0.1043 for experiments 1 and 2 combined). Overall, methane emissions measured using SF6 were higher (P<0.001) than GF during grazing (186 vs. 164 g/day), but there was significant (P<0.01) concordance between the two methods (0.6017). There were fewer methane measurements by GF under grazing conditions in experiment 3 (1.60/day) com-pared to indoor measurements in experiments 1 (2.11/day) and 2 (2.34/day). Significant treatment effects on methane emission measured using RC and SF6 were not evident for GF measurements, and the ranking for treatments and individual animals differed using the GF system. We conclude that under our conditions of use the GF system was unable to detectsignificant treatment and individual animal differences in methane emissions that were identified using both RC and SF6techniques, in part due to limited numbers and timing ofmeasurements obtained. Our data suggest that successful use of the GF system is reliant on the number and timing of measurements obtained relative to diurnal patterns of methane emission
Recommended from our members
Evaluation and prediction of nitrogen use efficiency and outputs in faeces and urine in beef cattle
Beef cattle production is valuable to food security, contributing meat of high nutritional value. However, beef cattle are rather inefficient in utilising dietary nitrogen (N), thus excreting substantial amounts of N in their urine and faeces and imposing an environmental burden. The aim of this study was to evaluate the main dietary factors affecting N use efficiency (NUE) in beef cattle and develop prediction models for N excretion in manure, faeces and urine. This knowledge is essential for the development and evaluation of cost-effective N mitigation strategies. A database of 289 treatment means was constructed from 69 published studies and 1194 animals. Data included diet contents of N, dry matter (DM), organic matter (OM), neutral-detergent fibre (NDF), acid-detergent fibre (ADF), ether extract, starch, ash, gross energy (GE), metabolisable energy (ME), and outputs of N in manure, in urine or in faeces. Regression equations to predict N outputs in manure (MNO), urine (UNO) and faeces (FNO), as well as various NUE indicators, were developed using residual maximum likelihood analysis. Evaluation of new and existing models was performed using the mean prediction error (MPE) to describe prediction accuracy. Manure, urine and faeces N outputs were predicted with improved accuracy (MPE from 0.557 to 0.162; from 0.764 to 0.208; and from 0.458 to 0.177, respectively) when DM or OM digestibilities, and/or diet contents of N, NDF, ADF, Starch, OM, GE, ME, and/or forage proportion in the diet were added as predictors in different equations already containing either DM intake, N intake or body weight as primary predictor. New and existing models displayed an under-prediction of N outputs at the highest range of actual N outputs (when MNO > 207 g/d, UNO > 109 g/d). However, some of the new equations had improved overall accuracy (best MPE for MNO, UNO and FNO being 0.162, 0.208 and 0.177, respectively) and, when DM digestibility, and contents of N, NDF, Starch and ME were added as predictors in different equations, the extent of this under-prediction was also reduced (occurring when MNO > 208 g/d, UNO > 132 g/d). The regression models for NUE, demonstrated that diets which are more digestible and contain less N and fibre and more ME, may reduce N excretions, but mitigation strategies will also need to account for the potential effect on animal productivity and health
How adults with a profound intellectual disability engage others in interaction
Using video records of everyday life in a residential home, we report on what
interactional practices are used by people with severe and profound
intellectual disabilities to initiate encounters. There were very few initiations,
and all presented difficulties to the interlocutor; one (which we call "blank
recipiency") gave the interlocutor virtually no information at all on which to
base a response. Only when the initiation was of a new phase in an interaction
already under way (for example, the initiation of an alternative trajectory of a
proposed physical move) was it likely to be successfully sustained. We show
how interlocutors (support staff; the recording researcher) responded to
initiations verbally, as if to neurotypical speakers - but inappropriately for
people unable to comprehend, or to produce well-fitted next turns. This misreliance
on ordinary speakers' conversational practices was one factor that
contributed to residents abandoning the interaction in almost all cases. We
discuss the dilemma confronting care workers
Recommended from our members
Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques
Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) vs. high grass silage (GS) diets, without or with added neutral-detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12-wks in duration with a randomized block continuous design and 40 Holstein cows (74 d in milk; DIM) in free-stall housing, assigned to 1 of 4 dietary treatments (n = 10 per treatment), according to calving date, parity and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg DMI) estimated using a GF unit (wks 10 to 12). Experiment 2 was a 4 × 4 Latin Square Design with 5-wk periods and 4 dairy cows (114 DIM) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production and composition occurred in wk 4, and DMI, milk production and methane yield were measured for 2 d in RC during wk 5. Dietary treatments for both experiments were fed as TMRs offered ad libitum and containing 500 g silage/kg DM comprised of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47 g NDF/kg DM; MSNDF and GSNDF). In both experiments, compared to high GS, cows fed high MS had a higher (P = 0.01) DMI, greater (P = 0.01) milk production, and lower (P = 0.02) methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets (P = 0.02 for experiment 1 and P = 0.10 for experiment 2, forage type × NDF interaction). In the separate experiments the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg DMI), although the magnitude of the difference varied between experiments for dietary treatments Overall methane emission and yield were 448 g/d and 20.9 g/kg DMI using GF for experiment 1 using GF and 458 g/d and 23.8 g/kg DMI for experiment 2 using RC, respectively
Recommended from our members
Prediction of portal and hepatic blood flow from intake level data in cattle
There is growing interest in developing integrated post-absorptive metabolism models for dairy 30 cattle. An integral part of linking a multi-organ post-absorptive model is the prediction of nutrient 31 fluxes between organs, and thus blood flow. It was the purpose of this paper to use a multivariate 32 meta-analysis approach to model portal blood flow (PORBF) and hepatic venous blood flow 33 (HEPBF) simultaneously, with evaluation of hepatic arterial blood flow (ARTBF; ARTBF = 34 HEPBF – PORBF) and PORBF/HEPBF (%) as calculated values. The database used to develop 35 equations consisted of 296 individual animal observations (lactating and dry dairy cows and beef 36 cattle) and 55 treatments from 17 studies, and a separate evaluation database consisted of 34 37 treatment means (lactating dairy cows and beef cattle) from 9 studies obtained from the literature. 38 Both databases had information on DMI, MEI, body weight and a basic description of the diet 39 including crude protein intake and forage proportion of the diet (FP; %). Blood flow (L/h or L/kg 40 BW0.75/h) and either DMI or MEI (g or MJ/d or g or MJ/kg BW0.75/d) with linear and quadratic 41 fits were examined. Equations were developed using cow within experiment and experiment as 42 random effects, and blood flow location as a repeated effect. Upon evaluation with the evaluation 43 database, equations based on DMI typically resulted in lower root mean square prediction errors, 44 expressed as a % of the observed mean (rMSPE%) and higher concordance correlation coefficient 45 (CCC) values than equations based on MEI. Quadratic equation terms were frequently non-46 significant, and the quadratic equations did not out-perform their linear counterparts. The best 47 performing blood flow equations were: PORBF (L/h) = 202 (± 45.6) + 83.6 (± 3.11) × DMI (kg/d) and HEPBF (L/h) = 186 (± 45.4) + 103.8 (± 3.10) × DMI (kg/d), with rMSPE% values of 17.5 and 49 16.6 and CCC values of 0.93 and 0.94, respectively. The residuals (predicted – observed) for 50 PORBF/HEPBF were significantly related to the forage % of the diet, and thus equations for 51
3
PORBF and HEPBF based on forage and concentrate DMI were developed: PORBF (L/h) = 210 52 (± 51.0) + 82.9 (± 6.43) × Forage (kg DM/d) + 82.9 (± 6.04) × Concentrate (kg DM/d), and 53 HEPBF (L/h) = 184 (± 50.6) + 92.6 (± 6.28) × Forage (kg DM/d) + 114.2 (± 5.88) × Concentrate 54 (kg DM/d), where rMSPE% values were 17.5 and 17.6 and CCC values were 0.93 and 0.94, 55 respectively. Division of DMI into forage and concentrate fractions improved the joint Bayesian 56 Information Criterion (BIC) value for PORBF and HEPBF (BIC = 6512 vs. 7303), as well as 57 slightly improved the rMSPE and CCC for ARTBF and PORBF/HEPBF. This was despite 58 minimal changes in PORBF and HEPBF predictions. Developed equations predicted blood flow 59 well, and could easily be used within a post absorptive model of nutrient metabolism. Results also 60 suggest different sensitivity of PORBF and HEPBF to the composition of DMI, and accounting 61 for this difference resulted in improved ARTBF predictions
How adults with a profound intellectual disability engage others in interaction
Using video records of everyday life in a residential home, we report on what interactional practices are used by people with severe and profound intellectual disabilities to initiate encounters. There were very few initiations,
and all presented difficulties to the interlocutor; one (which we call "blank recipiency") gave the interlocutor virtually no information at all on which to base a response. Only when the initiation was of a new phase in an interaction already under way (for example, the initiation of an alternative trajectory of a proposed physical move) was it likely to be successfully sustained. We show how interlocutors (support staff; the recording researcher) responded to initiations verbally, as if to neurotypical speakers - but inappropriately for people unable to comprehend, or to produce well-fitted next turns. This misreliance on ordinary speakers' conversational practices was one factor that contributed to residents abandoning the interaction in almost all cases. We discuss the dilemma confronting care workers
BREATHE: The Health Data Research Hub for Respiratory Health.
Objectives
The BREATHE Health Data Research Hub for Respiratory Health was formed in October 2019 as a multi-site academic consortium with multiple industrial partners via an Industry Forum and across its wider network. BREATHE’s main mission is enhancing data services within respiratory science, funded by the UKRI Industrial Strategy Challenge Fund.
Approach
BREATHE leveraged expertise across its founding sites and industrial partners to create data services which could be used by multiple sectors of collaborator. Across the founding sites, BREATHE was able to mobilise datasets housed within national TREs to form real-world evidence eCohorts for rapid and efficient respiratory study (Asthma, COPD, ILD), and has worked with specialists in cohort study and genomic data to house and supply these from within our partner TRE, SAIL Databank. As well as data assets, BREATHE is able to provide clinical and data expertise to collaborators for grant submissions and on bespoke respiratory science projects.
Results
Including a significant period of work during the pandemic supporting COVID-19 research and also focusing on other respiratory disease science support, BREATHE is now well-placed to move towards a sustainable operating plan post-grant from March 2023. Due to the approach taken in maximising data services for multiple sectors, BREATHE is positioned to provide data linkage and sharing services (making use of its TRE, SAIL Databank), providing analytic and clinical support to respiratory research projects for customers in multiple sectors (Pharma, SMEs, Academia, NHS, Charities), and advancing synthetic data and software development, again in partnership with SAIL and our wider industry partners.
Conclusion
As of March 2022, BREATHE has established a portfolio of data services and projects interfacing with multiple sectors of collaborator in enhancing respiratory science projects across the UK. With population-level data assets representing Wales, Scotland, and England and the ability to work with the Northern Ireland infrastructure housed at Swansea University, BREATHE supports 4-nation respiratory science in RWE data, and provides clinical and data linkage expertise to studies such as longitudinal cohorts, pharma companies, and contract research organisations
Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD
SummaryBackgroundIncorrect usage of inhaler devices might have a major influence on the clinical effectiveness of the delivered drug. This issue is poorly addressed in management guidelines.MethodsThis article presents the results of a systematic literature review of studies evaluating incorrect use of established dry powder inhalers (DPIs) by patients with asthma or chronic obstructive pulmonary disease (COPD).ResultsOverall, we found that between 4% and 94% of patients, depending on the type of inhaler and method of assessment, do not use their inhalers correctly. The most common errors made included failure to exhale before actuation, failure to breath-hold after inhalation, incorrect positioning of the inhaler, incorrect rotation sequence, and failure to execute a forceful and deep inhalation. Inefficient DPI technique may lead to insufficient drug delivery and hence to insufficient lung deposition. As many as 25% of patients have never received verbal inhaler technique instruction, and for those that do, the quality and duration of instruction is not adequate and not reinforced by follow-up checks.ConclusionsThis review demonstrates that incorrect DPI technique with established DPIs is common among patients with asthma and COPD, and suggests that poor inhalation technique has detrimental consequences for clinical efficacy. Regular assessment and reinforcement of correct inhalation technique are considered by health professionals and caregivers to be an essential component of successful asthma management. Improvement of asthma and COPD management could be achieved by new DPIs that are easy to use correctly and are forgiving of poor inhalation technique, thus ensuring more successful drug delivery
- …